Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nach 600 Sekunden ist alles vorbei

19.03.2013
Studenten der Universität Würzburg entwickeln zurzeit einen neuartigen Sensor, der Satelliten dazu in die Lage versetzen soll, sich aus eigener Kraft zu stabilisieren, wenn sie ins Trudeln geraten sind. In einem Jahr wird ihre Entwicklung in einer Rakete die Reise in den Weltraum antreten.

Vor kurzem erst hat es Nordkorea erwischt: Sein im Dezember ins All gebrachter Satellit geriet offensichtlich nach dem Aussetzen aus der Trägerrakete ins Trudeln. Weil er deshalb keinen Kontakt zur Kontrollstation am Boden aufnehmen konnte, waren Gegenmaßnahmen unmöglich. Seitdem taumelt „Kwangmyongsong-3“ als ziemlich teurer Weltraumschrott instabil um die Erde – unfähig seine vorgesehene Arbeit zu erledigen.

Das Horizont-Sensor-System

Hätte Kwangmyongsong-3 eine Technik an Bord gehabt, wie sie derzeit von fünf Studenten der Luft- und Raumfahrtinformatik der Universität Würzburg entwickelt wird, wäre das möglicherweise nicht passiert. Die Fünf arbeiten an einem sogenannten Horizont-Sensor-System; bei einem Flug mit einer Höhenforschungsrakete werden sie es, wenn alles wie geplant läuft, im Frühjahr 2014 unter nahezu realen Bedingungen testen. Betreut werden die Studenten dabei von Hakan Kayal, Professor am Lehrstuhl Informationstechnik für Luft- und Raumfahrt der Uni Würzburg, und von Gerhard Fellinger, wissenschaftlicher Mitarbeiter am Lehrstuhl.

Erd-Sensoren zur Lageerkennung für Satelliten gibt es heute schon. „Das sind allerdings in der Regel Infrarotsensoren, die nur hell-dunkel unterscheiden können“, sagt Gerhard Fellinger. Bei der Technik, an der die Studenten aus Würzburg arbeiten, handele es sich hingegen um eine komplette Neuentwicklung, so Hakan Kayal.

Das Prinzip dieses Horizont-Sensor-Systems klingt simpel: Eine ganz normale Kamera, wie sie viele Satelliten sowieso zur Erdbeobachtung an Bord tragen, schickt ihre Bilder an den systemeigenen Rechner. Spezielle Algorithmen suchen darauf nach dem Erdhorizont. Ist er gefunden, kann sich der Satellit autonom und ohne Steuerbefehle von der Bodenstation daran orientieren und stabilisieren.

Die technischen Anforderungen

Die Realisierung hat es allerdings in sich. „Natürlich gibt es bereits Software, die in der Lage ist, Linien und Kanten auf Bildern zu erkennen“, sagt Thomas Rapp, Projektleiter des studentischen Teams. Allerdings müssten die angehenden Raumfahrtinformatiker diese an ihre speziellen Erfordernisse anpassen. Ihre Algorithmen müssen beispielsweise den Horizont von Küstenlinien und speziellen Schichten in der Atmosphäre unterscheiden können. Sie dürfen sich nicht von Wolken verwirren lassen und müssen auch darauf reagieren können, wenn die Kamera von der Sonne geblendet wird.

Zudem muss der Sensor klein sein, schließlich soll er vor allem bei Pico- und Nanosatelliten zum Einsatz kommen, die selbst maximal 20 Kilogramm schwer sind, wie Hakan Kayal erklärt. Und er muss stabil sein: Vibrationen, wie sie beim Start einer Rakete typischerweise auftreten, sollte er schadlos überstehen und genauso enorme Temperaturschwankungen mühelos verkraften. Immerhin kann es beim Start in Nordschweden im Frühjahr minus 40 Grad haben; dafür wird es umso wärmer, wenn die Rakete nach ihrem Abstecher in den Orbit wieder in die Atmosphäre eintritt.

„Das sind ganz schön große Herausforderungen für uns – gerade bei unserem derzeitigen Kenntnisstand“, sagt Thomas Rapp. Schließlich kommen die fünf Studenten im Sommer erst ins vierte Semester ihres Bachelorstudiums. Hakan Kayal ist allerdings sicher, dass sie die Herausforderung bewältigen werden. „Sie haben sich schon jetzt eine Menge Wissen angeeignet und gezeigt, dass sie die Anforderungen beherrschen“, lobt der Professor das junge Team.

Raketen-Experimente für Studenten

Und wie schaffen es die Studierenden, ihren Sensor auf einer Rakete unterzubringen und ins Weltall zu schießen? Dahinter steckt ein gemeinsames Programm der Europäischen Weltraumorganisation ESA, des Deutschen Zentrums für Luft- und Raumfahrt DLR und des Swedish National Space Board SNSB. Sein Name: REXUS – eine Abkürzung für „Raketen-Experimente für Universitäts-Studenten“. Es bietet Studierenden die Möglichkeit, wissenschaftliche und technische Experimente auf Raketen unter speziellen Atmosphärenbedingungen durchzuführen.

Alljährlich im September schreiben die Raumfahrt-Agenturen den Ideenwettbewerb für REXUS-Flüge im übernächsten Jahr neu aus. Studierenden-Teams aus ganz Europa können sich dann mit ihren Ideen um einen Platz auf der Rakete bewerben; welches Fach sie studieren, spielt bei der Auswahl keine Rolle.

Die Rakete

Jeweils im März starten zwei REXUS-Raketen vom nordschwedischen Esrange Space Center. Sie sind fast sechs Meter lang und besitzen einen Durchmesser von rund 36 Zentimetern. Auf ihrem Flug erreichen sie eine Höhe von bis zu 100 Kilometern und können dabei bis zu 40 Kilogramm Experiment-Nutzlast mit sich tragen.

„Gerade einmal 600 Sekunden dauert der Flug“, sagt Thomas Rapp. So viel Zeit haben die Studierenden, ihren Sensor zu testen. Danach fällt die Rakete auf die Erde zurück. Wenn sie nicht gerade in einen der zahlreichen schwedischen Seen stürzt und versinkt, wird sie geborgen, und die Studierenden können überprüfen, wie ihr Sensor die Reise überstanden hat.

Die nächsten Schritte

Auf einem Treffen mit Experten des DLR haben die Studenten vor kurzem ein Feedback auf ihre Pläne bekommen. „Jetzt sind wir damit beschäftigt, die entsprechenden Nacharbeiten vorzunehmen“, sagt Thomas Rapp. „Papierarbeit“ habe bisher einen wesentlichen Teil ihres Projekts ausgemacht. Das wird sich schon bald ändern. Spätestens im Juni müssen das Design und sämtliche detaillierten Informationen feststehen. Dann wird der Sensor in den Räumen am Hubland gebaut und intensiv getestet, bevor er im November an das DLR übergeben wird.

Bis März 2014 werden die Studenten noch viel Zeit in die Entwicklung ihres Sensors stecken – Zeit, die sie neben ihrem Studium aufbringen müssen. Aber das ist es wert, sagen sie. Immerhin sei die Arbeit „eine wahnsinnig gute Ergänzung zum Studiengang“. Und überhaupt: „So eine Gelegenheit gibt es nur einmal im Leben!“

Das Team

HORACE haben die Studenten ihr Projekt genannt – Horizon Acquisition Experiment. Daran beteiligt sind:

* Jochen Barf (Entwicklung der Algorithmen)
* Sven Geiger (Implementierung des Systems auf der Platine)
* Thomas Rapp (Projektmanagement)
* Arthur Scharf (Tests und Öffentlichkeitsarbeit)
* Florian Wolz (Konstruktion und Mechanik)
Kontakt
Prof. Dr.-Ing. Hakan Kayal, T: (0931) 31-86649,
kayal@informatik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de
http://horace-rexus.de/

Weitere Berichte zu: DLR Horizont-Sensor-System Luft- und Raumfahrt Rakete Raumfahrt Sensor Space satellites

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Elektromobilität: Forschungen des Fraunhofer LBF ebnen den Weg in die Alltagstauglichkeit
27.03.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Wärme in Strom: Thermoelektrische Generatoren aus Nanoschichten
16.03.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit