Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Computer beim Denken zuschauen

01.02.2017

Neuronale Netze werden heute häufig für die Analyse komplexer Daten eingesetzt – zum Beispiel um in genetischen Informationen Hinweise auf Krankheiten zu entdecken. Letztlich aber weiß niemand, wie diese Netzwerke eigentlich genau arbeiten. Fraunhofer-Forscher haben deshalb eine Software entwickelt, mit der sie in die Black Boxes hineinschauen und deren Arbeitsweise analysieren können. Auf der CeBIT in Hannover stellen die Forscher ihre Software vom 20. bis 24. März 2017 vor (Halle 6, Stand B 36).

Früher war es mühsam, im Computer Fotos zu sortieren. Heute klickt man auf die Gesichtserkennung – und flugs erscheint eine Bildauswahl der Tochter oder des Sohnes. Computer sind inzwischen gut darin, große Datenmengen zu analysieren und nach bestimmten Strukturen wie einem Gesicht auf Bildern zu fahnden. Möglich machen das Neuronale Netze, ein inzwischen etabliertes und ausgefeiltes informationstechnisches Analyseverfahren (siehe Kasten »Die Funktionsweise von Neuronalen Netzen«).


Die Analyse-Software des Fraunhofer HHI visualisiert mit Hilfe von Algorithmen komplexe Lernverfahren (schematische Darstellung).

© Fraunhofer HHI

Das Problem: Nicht nur Forscher wissen heute nicht genau, wie Neuronale Netze Schritt für Schritt arbeiten und wieso sie zu diesem oder jenem Ergebnis kommen. Neuronale Netze sind gewissermaßen Black Boxes, Computerprogramme, in die man Werte einspeist und die zuverlässig Ergebnisse liefern. Will man einem neuronalen Netz etwa beibringen, Katzen zu erkennen, dann lernt man das System an, indem man es mit Tausenden von Katzenbildern füttert.

Wie ein kleines Kind, das langsam versteht, Katzen von Hunden zu unterscheiden, lernt auch das neuronale Netz automatisch. »In vielen Fällen aber interessieren sich Forscher weniger für das Ergebnis, sondern vielmehr dafür, was das neuronale Netz eigentlich tut, wie es zu Entscheidungen kommt«, sagt Dr. Wojciech Samek, Leiter der Forschungsgruppe für Maschinelles Lernen am Fraunhofer Heinrich-Hertz-Institut HHI in Berlin. Samek und seine Kollegen haben deshalb zusammen mit Kollegen von der Technischen Universität Berlin eine Methode entwickelt, mit der man einem neuronalen Netz beim Denken zuschauen kann.

Maßgeschneiderte Krebstherapien dank Maschinellem Lernen

Das ist beispielsweise für die Erkennung von Krankheiten wichtig. Heute kann man Computer beziehungsweise neuronale Netze bereits mit den Erbgut-Daten von Patienten füttern. Das Netzwerk analysiert dann, mit welcher Wahrscheinlichkeit der Patient eine bestimmte genetische Erkrankung hat. »Viel interessanter wäre es aber, wenn wir genau wüssten, an welchen Merkmalen das Programm seine Entscheidungen fest macht«, sagt Samek. Das könnten bestimmte Gendefekte sein, die bei dem Patienten vorliegen – und die wiederum könnten ein möglicher Angriffspunkt für eine individuell auf den Patienten zugeschnittene Krebstherapie sein.

Neuronale Netze im Rückwärtsgang

Mit ihrer Methode können die Forscher die Arbeit der neuronalen Netze rückwärts ablaufen lassen. Sie arbeiten sich damit vom Ergebniswert in umgekehrter Richtung durch das Programm. »Wir können genau sehen, an welcher Stelle eine bestimmte Gruppe von Neuronen eine bestimmte Entscheidung getroffen und wie stark diese zum Ergebnis beigetragen hat«, sagt Wojciech Samek. Dass das Verfahren funktioniert, konnten die Forscher schon mehrfach auf eindrucksvolle Weise zeigen. So haben sie zwei im Internet öffentlich verfügbare Programme verglichen, die beide in der Lage sind, Pferde auf Bildern zu erkennen. Das Ergebnis war verblüffend. Das erste Programm erkannte tatsächlich den Körper der Pferde. Das zweite aber orientierte sich an den Copyright-Zeichen der Fotos, welche Hinweise auf Foren für Pferdeliebhaber oder Reit- und Zuchtvereine gaben, sodass das Programm eine hohe Trefferquote erreichte, obwohl es gar nicht gelernt hatte, wie Pferde aussehen.

Anwendungsfeld Big Data

»Man sieht also, wie wichtig es ist, genau zu verstehen, wie ein solches Netzwerk arbeitet«, sagt Samek. Das sei vor allem auch für die Industrie interessant. »So ist es denkbar, aus den Betriebsdaten einer komplexen Produktionsanlage herauszulesen, welche Parameter die Qualität eines Produktes beeinflussen oder zu Schwankungen bei derselben führen«, sagt Samek. Auch für viele andere Applikationen, bei denen es um die neuronale Analyse großer oder komplexer Datenmengen geht, sei die Erfindung interessant. »In einem anderen Experiment konnten wir zeigen, anhand welcher Parameter ein Netzwerk entscheidet, ob ein Gesicht alt oder jung erscheint.«

Banken analysieren laut Samek seit geraumer Zeit mithilfe neuronaler Netze sogar die Kreditwürdigkeit von Bankkunden. Dafür werden große Mengen von Kundendaten gesammelt und von einem neuronalen Netz bewertet. »Wenn man wüsste, wie das Netz zu seiner Entscheidung kommt, könnte man von vornherein die Menge der Daten reduzieren, indem man die relevanten Parameter auswählt«, so der Experte. Das sei durchaus auch im Interesse der Kunden. Während der Messe CeBIT in Hannover vom 20. bis 24. März 2017 werden die Forscher um Samek zeigen, wie sie mit ihrer Software die Black Boxes neuronaler Netze analysieren – und wie diese aus Gesichtern das Alter oder Geschlecht der Person herauslesen oder Tiere erkennen.

Weitere Informationen:

https://www.fraunhofer.de/de/presse/presseinformationen/2017/februar/dem-compute...

Anne Rommel | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie CeBIT 2017:

nachricht Schnell und einfach: Edge Datacenter fürs Internet of Things
24.03.2017 | Rittal GmbH & Co. KG

nachricht Lifecycle IT: Erfolgsstory für Datacenter
22.03.2017 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: CeBIT 2017 >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

18.01.2018 | Informationstechnologie

Optimierter Einsatz magnetischer Bauteile - Seminar „Magnettechnik Magnetwerkstoffe“

18.01.2018 | Seminare Workshops

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungsnachrichten