Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellulose auf der schiefen Bahn

26.04.2013
Ohne Mikrotubuli bringt die Zellulose beim Wachstum die Blattstellung durcheinander

Die Natur ist voller Mathematik. Besonders faszinierend und einfach zu erkennen sind Spiralmuster, wie sie bei Sonnenblumen, Tannenzapfen oder der Blattstellung an Sprossachsen vorkommen.


Normale Arabidopsis-Pflanzen (links) bilden aufeinanderfolgende Organe im Winkel von 137 Grad, während die pom2-4-Mutante (rechts) einen Divergenzwinkel von 184 Grad aufweist. Schuld daran ist die ungerichtete Bildung von Zellulose.
© MPI für molekulare Pflanzenphysiologie

Diese Spiralen entstehen, weil die meisten Pflanzen neue Knospen immer genau im Abstand von 137 Grad zu ihrem Vorgänger produzieren. Normalerweise verändert sich die relative Position der Pflanzenorgane während des Wachstums nicht, da die Stängel gerade wachsen. Kappt man aber die Verbindung zwischen Zellskelett und Zellulose, kommen die Zellulosefasern auf die schiefe Bahn und die Sprossachsen der Pflanzen rotieren um sich selbst.

Der Winkel zwischen den Blättern verschwindet, doch an seine Stelle treten andere, ebenso robuste mathematisches Muster. Die Ergebnisse legen nahe, dass ohne Regulierung alle Pflanzenstängel beim Wachsen rotieren würden.

Schon Leonardo da Vinci war aufgefallen, dass die Blätter an Sprossachsen keinesfalls wahllos angeordnet sind. Offensichtlich steckt ein ausgeklügeltes System hinter dieser Anordnung. Manche Pflanzen bilden immer zwei Blätter gleichzeitig, die sich genau gegenüberstehen, man spricht dann von gegenständigen Blättern. Bei anderen sind die einzelnen Blätter spiralförmig um die Sprossachse angeordnet. Letzteres hat den Vorteil, die Pflanze das Sonnenlicht optimal ausnutzen kann.

Viele Wissenschaftler haben bereits untersucht, wie solche Muster gebildet werden. Besonders die Rolle der Pflanzenhormone stand im Mittelpunkt der Forschung. Hormone beeinflussen zum Beispiel, an welchen Stellen neue Knospen angelegt werden. Doch Pflanzen verändern beim Wachsen ständig ihre Form und trotzdem sind Muster auch in ausgewachsenen Pflanzen sichtbar. Hat das Wachstum auf die Pflanzenarchitektur am Ende gar keinen Einfluss?

Staffan Persson und sein Team vom Max-Planck-Institut für molekulare Pflanzenphysiologie untersuchen die Bildung der Zellwand. Pflanzliche Zellwände bestehen hauptsächlich aus Zellulose, die von einem großen Enzymkomplex hergestellt wird, der pausenlos Zuckermoleküle zu langen Ketten verknüpft. Diese Enzyme bewegen sich kreisförmig um die Zellen herum und wandern dabei immer genau entlang der Bahnen des Zellskeletts aus Mikrotubuli. „Während der Experimente an Pflanzen, bei denen die Verbindung zwischen den Mikrotubuli und den Zellulose-synthetisierenden Proteinen fehlt, fiel uns auf, dass die Sprossachsen der Pflanzen nicht mehr gerade nach oben wachsen“, erklärt Persson. Stattdessen drehten sich die Stängel um sich selbst, immer ganz leicht nach rechts.
Schuld an diesem konstanten Rechtsdrall der Sprossachse sind die orientierungslosen Zellulosefasern. Ohne die Hilfe der Mikrotubuli werden die Zellulosefasern immer schräger und bewirken somit eine Torsion der Sprossachse. Diese Drehung führt dazu, dass sich auch die Blattanlagen verschieben. Das Team um Olivier Hamant von der École normale supérieure (ENS) in Lyon, Frankreich, hat die Blattanlagen von Perssons Pflanzen exakt vermessen. „Während Arabidopsis-Pflanzen vom Wildtyp einen Blattwinkel von 137,5 Grad einhalten, konnten wir bei unseren Pflanzen Winkel von entweder 90 Grad oder 184 Grad beobachten“, beschreibt Erstautor Benoit Landrein die Ergebnisse. Pflanzen, die ihre Blätter im Uhrzeigersinn ausbilden, bildeten Blätter im Abstand von 90 Grad. Verlief die Blattbildung entgegen dem Uhrzeigersinn, wurden konstante 184 Grad gemessen. „Das erstaunliche ist, dass hier ein mathematisches Muster durch ein anderes ersetzt wurde“, so Hamant und Persson. Die Torsion der Sprossachse bringt zwar die spiralige Anordnung nach dem Goldenen Winkel durcheinander, etabliert dafür aber ein anderes, ebenso robustes System.

Dass wirklich die Zellulosefasern für die Drehung der Sprossachsen verantwortlich sind, konnten die Forscher in einem zweiten Experiment zeigen. Dafür vermaßen sie Pflanzen, die aufgrund einer Mutation wesentlich kürzere Zellulosefasern ausbildeten. Hier war auch die Torsion der Sprossachse geringer, was mit den vorherigen Resultaten zusammenpasste.

Der Einfluss des Wachstums auf die Morphogenese, also die Entwicklung von Organen und Geweben, wurde in entwicklungsphysiologische Studien bisher oft vernachlässigt, weil die Mechanismen dahinter unbekannt waren. „Unsere Erkenntnisse werfen ein neues Licht auf die Morphogenese, weil sie den Beitrag des Wachstums verstehen und berücksichtigen“, so Hamant. Außerdem zeigt die Studie, wie ein mikroskopisches Ereignis, nämlich die Trennung von Zellulose und Zellskelett, zu makroskopischen Veränderungen führen kann: einer neuen Pflanzenarchitektur. Mit diesen Resultaten und dem Verständnis über das Zusammenspiel zwischen Wachstum und Musterbildung ist es jetzt an der Zeit, Morphogenese in all ihrer Komplexität zu untersuchen.

Ansprechpartner

Dr. Staffan Persson,
Max-Planck-Institut für molekulare Pflanzenphysiologie, Potsdam-Golm
Telefon: +49 331 567-8149
E-Mail: persson@­mpimp-golm.mpg.de
Claudia Steinert,
Max-Planck-Institut für molekulare Pflanzenphysiologie, Potsdam-Golm
Telefon: +49 331 567-8275
Fax: +49 331 567-8408
E-Mail: Steinert@­mpimp-golm.mpg.de
Originalpublikation
Benoit Landrein, Rahul Lathe, Martin Bringmann, Cyril Vouillot, Alexander Ivakov, Christy A. Hipsley, Arezki Boudaoud, Staffan Persson, Olivier Hamant
Impaired Cellulose Synthase Guidance Leads to Stem Torsion and Twists Phyllotactic Patterns in Arabidopsis

Current Biology; Online-Vorabveröffentlichung 25. April 2013; doi: 10.1016/j.cub.2013.04.013

Dr. Staffan Persson | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7119370/Zellulose-Blattstellung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie