Wie sich Zellen gegen Gen-Schäden schützen

Eine Modelldarstellung zeigt, wie kompliziert die Entstehung von Eisen-Schwefel-haltigen Proteinen vor sich geht. (Abbildung: Philipps-Universität/AG Lill)<br>

Das berichten Marburger und US-amerikanische Wissenschaftler vorab in der Online-Ausgabe des Wissenschaftsmagazins „Science“. Wie die Autoren zeigen, kommt die beobachtete Funktion von MMS19 bei Einzellern wie der Hefe ebenso vor wie bei komplexeren Organismen, auch beim Menschen.

Enzyme mit Eisen-Schwefel (FeS)-Clustern sind unersetzlich für zahlreiche essenzielle Lebensprozesse, insbesondere bei der Vervielfältigung der Erbsubstanz DNA sowie deren Reparatur nach Schädigungen, zum Beispiel durch UV-Strahlung oder mutagene Chemikalien. „Wie das MMS19-Protein hierzu beiträgt, war seit seiner Entdeckung vor 30 Jahren unbekannt“, sagt der Zellbiologe Professor Dr. Roland Lill von der Philipps-Universität, der als Seniorautor der Veröffentlichung firmiert.

Die Entstehung von FeS-Proteinen ist ein mehrstufiger Prozess, der das Zusammenwirken einer Reihe von spezialisierten Enzymen erfordert. Lill und seine Kollegen weisen in ihrem Aufsatz nach, dass MMS19 sowohl mit Bestandteilen dieser Maschinerie interagiert, als auch mit den entstehenden FeS-haltigen Proteinen. „Unsere Daten lassen vermuten, dass MMS19 als Adapter die Übertragung der FeS-Cluster auf die verschiedenen Zielmoleküle erleichtert“, fassen die Forscher ihre Ergebnisse zusammen. „Viele früher gemachte Beobachtungen zur Beteiligung des MMS19 an der Synthese und Reparatur der DNA und an der Transkription können mit dieser nun geklärten Funktion bei der FeS Proteinherstellung leicht verstanden werden.“

Die molekularen Interaktionen von MMS19 lassen sich sowohl in Kulturen menschlicher Zellen zeigen, als auch bei Hefepilzen, die Energie auch ohne die Veratmung von Sauerstoff gewinnen können. Die Biogenese von FeS-Proteinen beginnt jeweils in den Mitochondrien, die vor allem als diejenigen Zellbestandteile bekannt sind, in denen die Zellatmung stattfindet. „Die entscheidende Funktion der Mitochondrien bei der Entstehung von FeS-Proteinen und somit für die Aufrechterhaltung der DNA im Zellkern ist wohl auch der Grund dafür, dass diese Organellen selbst in solchen Organismen erhalten sind, die ohne Sauerstoff auskommen“, spekulieren die Wissenschaftler.

Die Erkenntnisse sind Lill zufolge für zahlreiche Erkrankungen von Bedeutung, die mit DNA-Schäden und DNA-Reparatur einhergehen. Dazu gehören einige Formen des Krebses, insbesondere Hautkrebsarten, aber auch das Altern. So lasse sich nun erstmals erklären, warum manche mitochondriale Erkrankungen zahlreiche Schädigungen der DNA des Zellkerns nach sich ziehen, etwa die „Friedreich-Ataxie“, eine neurodegenerative Störung. „Die zentrale Rolle der Mitochondrien bei der Synthese von FeS-Proteinen ist der Schlüssel hierzu“, erklärt Lill.

Die Arbeitsgruppe von Roland Lill ist Teil des Sonderforschungsbereichs 593 der Deutschen Forschungsgemeinschaft sowie des „LOEWE“-Zentrums für Synthetische Mikrobiologie an der Philipps-Universität. Lill erhielt im Jahr 2003 den Leibnizpreis, den am höchsten dotierten deutschen Wissenschaftspreis; einem Ranking der Zeitschrift „Laborjournal“ zufolge zählt er zu den dreißig meistzitierten deutschen Zellbiologen. Die vorliegende Arbeit wurde finanziell unterstützt unter anderem durch die Deutsche Forschungsgemeinschaft, die Von-Behring-Röntgen-Stiftung, die Max-Planck-Gesellschaft, die Feldberg-Stiftung, den Fonds der chemischen Industrie sowie die Rhön Klinikum AG.

Originalpublikation: Oliver Stehling & al.: MMS19 Assembles Iron-Sulfur Proteins Required for DNA Metabolism and Genomic Integrity, Science 2012 (Online-Vorveröffentlichung), DOI: 10.1126/science.1219723
Weitere Informationen:
Ansprechpartner: Professor Dr. Roland Lill,
Institut für Zytobiologie
Tel.: 06421 28-66899
E-Mail: Sfb593@staff.uni-marburg.de
Internet: http://www.uni-marburg.de/sfb593/

Hintergrundartikel zum Thema:

FeS-Cluster bei DNA-Replikation:
http://www.uni-marburg.de/aktuelles/news/2011/1128a

Sonderforschungsbereich 593 verlängert:
http://www.uni-marburg.de/aktuelles/news/2010a/1123a

Biosynthese von FeS-Proteinen:
http://www.uni-marburg.de/aktuelles/news/2010a/0901a

Media Contact

Johannes Scholten idw

Weitere Informationen:

http://www.uni-marburg.de/sfb593/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer