Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ursache für unkontrolliertes Wachstum von Blutgefäßen identifiziert

29.03.2012
Forscher entdecken Hinweise darauf, wie Medikamentenresistenzen bei Tumorerkrankungen umgangen werden könnten

Die Bildung neuer Blutgefäße ist ein komplexer Prozess, bei dem unterschiedliche Signalproteine genau aufeinander abgestimmt miteinander wechselwirken. Große Bedeutung haben dabei der Wachstumsfaktor VEGF sowie der Notch-Signalweg.


Blutgefäße in der Retina der Maus nach Antikörperfärbung (grün). Die Gefäße wachsen aus dem Zentrum der Retina in die äußeren Regionen und bilden dabei Sprosse, die in das angrenzende, noch unversorgte Gewebe eindringen. Da die Retina eine halbkugelartige Form hat, muss das Gewebe bei der Präparation für die Mikroskopie durch Einschnitte in der Peripherie in eine flache Form gebracht werden. Dadurch ergibt sich der Eindruck von 4 Sektoren. MPI für molekulare Biomedizin

VEGF fördert das Wachstum der Blutgefäße, indem er an den Rezeptor VEGFR2 bindet; der Notch-Signalweg wirkt wie ein Schalter, mit dem die Blutgefäßbildung unterdrückt werden kann. Bisher gingen Forscher davon aus, dass Notch dazu VEGFR2 herunter reguliert und damit das VEGF Signal abschaltet.

Wissenschaftler am Max-Planck-Institut für molekulare Biomedizin in Münster haben jetzt in Kooperation mit der Westfälischen Wilhelms-Universität Münster gezeigt, dass ein defekter Notch-Signalweg Blutgefäße auch dann unkontrolliert wachsen lässt, wenn zugleich die Funktion von VEGF oder VEGFR2 blockiert wird. In diesem Fall wird ein anderer, verwandter Rezeptor namens VEGFR3 hochreguliert um dann die Vermehrung der Blutgefäße zu fördern.

„Diese Erkenntnis könnte die Hintergründe für Medikamentenresistenzen bei bestimmten Tumorbehandlungen erklären und die Basis für neue Strategien werden, wie derartige Resistenz-Probleme in der Praxis zukünftig umgangen werden können", betont Ralf Adams, geschäftsführender Direktor am MPI und Leiter der Abteilung Gewebebiologie und Morphogenese.

Ein fein verästeltes Netzwerk aus Blutgefäßen versorgt alle Organe des Menschen mit Nährstoffen und entfernt schädliche Stoffwechselprodukte aus den Geweben. Das Wachstum dieses Gefäßsystems ist für alle Entwicklungs- und Heilungsprozesse von größter Bedeutung. Umgekehrt kann unkontrolliertes Blutgefäßwachstum auch Krankheitsprozesse fördern – so wie beispielsweise Hämangiomen, schwammartigen Gefäßwucherungen in der Haut, oder Retinopathien im Auge von Diabetikern und alternden Menschen.

In der Krebstherapie wird häufig die Blutgefäßneubildung gehemmt, um die Versorgung von Tumoren sowie die Metastasierung über die Blutzirkulation zu unterbinden. Dazu werden der Wachstumsfaktor VEGF oder sein Rezeptor VEGFR2 blockiert: Bei schlechter Sauerstoffversorgung setzen Gewebe VEGF frei. Der Wachstumsfaktor bindet an den Rezeptor VEGFR2 und aktiviert ihn. Dadurch wird die Vermehrung der Blutgefäße ausgelöst. Eine Blockierung von VEGF oder VEGFR2 drosselt also das Blutgefäßwachstum. Manche Patienten sprechen allerdings schlecht oder gar nicht auf die Hemmung von VEGF oder VEGFR2 an, wobei die Gründe dafür noch unverstanden sind.

Rui Benedito, Postdoktorand in Adams Abteilung, konnte jetzt an Mausaugen zeigen, dass Blutgefäße durch Ausschalten des Notch-Signalwegs, eines steuernden Regelkreises, auch ohne die Aktivität von VEGF/VEGFR2 wachsen können. „In einem solchen Fall fördert dann ein weiterer, verwandter Rezeptor namens VEGFR3 die unkontrollierte Vermehrung von Blutgefäßen im Mausauge", erklärt Benedito. VEGFR3 wird durch das Fehlen von „Notch“ in den Gefäßen sehr stark hochgeregelt und ist dann auch ohne Signale aus der Gewebeumgebung aktiv.

„In weiteren Arbeiten wollen wir untersuchen, ob VEGFR3 und andere Notch-regulierte Signale eine VEGF-unabhängige Neubildung von Blutgefäßen bei Augen- oder Krebserkrankungen nicht nur bei der Maus sondern auch beim Menschen fördern können“, beschreibt Ralf Adams seine Pläne: „Möglicherweise wäre dann sogar vorhersagbar, ob Patienten, je nach dem Aktivierungsstatus von Notch in ihren Gefäßen, gut oder schlecht auf die Hemmung von VEGF oder VEGFR2 ansprechen werden. Entsprechend könnten bei Bedarf dann andere, erfolgversprechendere Therapieansätze gewählt werden." Auch dafür sei die Zusammenarbeit mit der medizinischen Fakultät und der Universität in Münster essenziell, so Adams weiter: „Seitens der Universität wird unsere Arbeit maßgeblich unterstützt und gefördert.“

Publikation:
Nature
Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF–VEGFR2 signalling.
Rui Benedito, Susana F. Rocha, Marina Woeste, Martin Zamykal, Freddy Radtke, Oriol Casanovas, Antonio Duarte, Bronislaw Pytowski & Ralf H. Adams
DOI: 10.1038/nature10908
Die Publikation erscheint in der Print-Ausgabe am 5. April 2012

Kontakt:
Prof. Dr. Ralf H. Adams
Direktor, Abteilung Gewebebiologie und Morphogenese
Max-Planck-Institut für molekulare Biomedizin
Röntgenstraße 20
D-48149 Münster
Tel.: 0251 70365-400
E-Mail: ralf.adams@mpi-muenster.mpg.de

Pressestelle
Hannes Schlender
Tel: +49 (0)179 671 83 79
E-Mail: schlender@sciencerelations.de

Prof. Dr. Ralf H. Adams | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-muenster.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

nachricht Forscher entwickeln Unterwasser-Observatorium
07.12.2016 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher entwickeln Unterwasser-Observatorium

07.12.2016 | Biowissenschaften Chemie

HIV: Spur führt ins Recycling-System der Zelle

07.12.2016 | Biowissenschaften Chemie

Mehrkernprozessoren für Mobilität und Industrie 4.0

07.12.2016 | Informationstechnologie