Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ursache für unkontrolliertes Wachstum von Blutgefäßen identifiziert

29.03.2012
Forscher entdecken Hinweise darauf, wie Medikamentenresistenzen bei Tumorerkrankungen umgangen werden könnten

Die Bildung neuer Blutgefäße ist ein komplexer Prozess, bei dem unterschiedliche Signalproteine genau aufeinander abgestimmt miteinander wechselwirken. Große Bedeutung haben dabei der Wachstumsfaktor VEGF sowie der Notch-Signalweg.


Blutgefäße in der Retina der Maus nach Antikörperfärbung (grün). Die Gefäße wachsen aus dem Zentrum der Retina in die äußeren Regionen und bilden dabei Sprosse, die in das angrenzende, noch unversorgte Gewebe eindringen. Da die Retina eine halbkugelartige Form hat, muss das Gewebe bei der Präparation für die Mikroskopie durch Einschnitte in der Peripherie in eine flache Form gebracht werden. Dadurch ergibt sich der Eindruck von 4 Sektoren. MPI für molekulare Biomedizin

VEGF fördert das Wachstum der Blutgefäße, indem er an den Rezeptor VEGFR2 bindet; der Notch-Signalweg wirkt wie ein Schalter, mit dem die Blutgefäßbildung unterdrückt werden kann. Bisher gingen Forscher davon aus, dass Notch dazu VEGFR2 herunter reguliert und damit das VEGF Signal abschaltet.

Wissenschaftler am Max-Planck-Institut für molekulare Biomedizin in Münster haben jetzt in Kooperation mit der Westfälischen Wilhelms-Universität Münster gezeigt, dass ein defekter Notch-Signalweg Blutgefäße auch dann unkontrolliert wachsen lässt, wenn zugleich die Funktion von VEGF oder VEGFR2 blockiert wird. In diesem Fall wird ein anderer, verwandter Rezeptor namens VEGFR3 hochreguliert um dann die Vermehrung der Blutgefäße zu fördern.

„Diese Erkenntnis könnte die Hintergründe für Medikamentenresistenzen bei bestimmten Tumorbehandlungen erklären und die Basis für neue Strategien werden, wie derartige Resistenz-Probleme in der Praxis zukünftig umgangen werden können", betont Ralf Adams, geschäftsführender Direktor am MPI und Leiter der Abteilung Gewebebiologie und Morphogenese.

Ein fein verästeltes Netzwerk aus Blutgefäßen versorgt alle Organe des Menschen mit Nährstoffen und entfernt schädliche Stoffwechselprodukte aus den Geweben. Das Wachstum dieses Gefäßsystems ist für alle Entwicklungs- und Heilungsprozesse von größter Bedeutung. Umgekehrt kann unkontrolliertes Blutgefäßwachstum auch Krankheitsprozesse fördern – so wie beispielsweise Hämangiomen, schwammartigen Gefäßwucherungen in der Haut, oder Retinopathien im Auge von Diabetikern und alternden Menschen.

In der Krebstherapie wird häufig die Blutgefäßneubildung gehemmt, um die Versorgung von Tumoren sowie die Metastasierung über die Blutzirkulation zu unterbinden. Dazu werden der Wachstumsfaktor VEGF oder sein Rezeptor VEGFR2 blockiert: Bei schlechter Sauerstoffversorgung setzen Gewebe VEGF frei. Der Wachstumsfaktor bindet an den Rezeptor VEGFR2 und aktiviert ihn. Dadurch wird die Vermehrung der Blutgefäße ausgelöst. Eine Blockierung von VEGF oder VEGFR2 drosselt also das Blutgefäßwachstum. Manche Patienten sprechen allerdings schlecht oder gar nicht auf die Hemmung von VEGF oder VEGFR2 an, wobei die Gründe dafür noch unverstanden sind.

Rui Benedito, Postdoktorand in Adams Abteilung, konnte jetzt an Mausaugen zeigen, dass Blutgefäße durch Ausschalten des Notch-Signalwegs, eines steuernden Regelkreises, auch ohne die Aktivität von VEGF/VEGFR2 wachsen können. „In einem solchen Fall fördert dann ein weiterer, verwandter Rezeptor namens VEGFR3 die unkontrollierte Vermehrung von Blutgefäßen im Mausauge", erklärt Benedito. VEGFR3 wird durch das Fehlen von „Notch“ in den Gefäßen sehr stark hochgeregelt und ist dann auch ohne Signale aus der Gewebeumgebung aktiv.

„In weiteren Arbeiten wollen wir untersuchen, ob VEGFR3 und andere Notch-regulierte Signale eine VEGF-unabhängige Neubildung von Blutgefäßen bei Augen- oder Krebserkrankungen nicht nur bei der Maus sondern auch beim Menschen fördern können“, beschreibt Ralf Adams seine Pläne: „Möglicherweise wäre dann sogar vorhersagbar, ob Patienten, je nach dem Aktivierungsstatus von Notch in ihren Gefäßen, gut oder schlecht auf die Hemmung von VEGF oder VEGFR2 ansprechen werden. Entsprechend könnten bei Bedarf dann andere, erfolgversprechendere Therapieansätze gewählt werden." Auch dafür sei die Zusammenarbeit mit der medizinischen Fakultät und der Universität in Münster essenziell, so Adams weiter: „Seitens der Universität wird unsere Arbeit maßgeblich unterstützt und gefördert.“

Publikation:
Nature
Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF–VEGFR2 signalling.
Rui Benedito, Susana F. Rocha, Marina Woeste, Martin Zamykal, Freddy Radtke, Oriol Casanovas, Antonio Duarte, Bronislaw Pytowski & Ralf H. Adams
DOI: 10.1038/nature10908
Die Publikation erscheint in der Print-Ausgabe am 5. April 2012

Kontakt:
Prof. Dr. Ralf H. Adams
Direktor, Abteilung Gewebebiologie und Morphogenese
Max-Planck-Institut für molekulare Biomedizin
Röntgenstraße 20
D-48149 Münster
Tel.: 0251 70365-400
E-Mail: ralf.adams@mpi-muenster.mpg.de

Pressestelle
Hannes Schlender
Tel: +49 (0)179 671 83 79
E-Mail: schlender@sciencerelations.de

Prof. Dr. Ralf H. Adams | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-muenster.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

nachricht Blutstammzellen reagieren selbst auf schwere Infektionen
21.07.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Pharmakologie - Im Strom der Bläschen

21.07.2017 | Biowissenschaften Chemie

Verbesserung des mobilen Internetzugangs der Zukunft

21.07.2017 | Informationstechnologie

Blutstammzellen reagieren selbst auf schwere Infektionen

21.07.2017 | Biowissenschaften Chemie