Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Süße Repression - Max-Planck-Forscher entdecken neue Funktion von Proteinmodifikationen

03.12.2014

Ein Großteil der Proteine in unseren Zellen trägt kleine Anhängsel aus Zuckermolekülen, die wichtig für ihre Funktion sind. Eine bestimmte Klasse davon, das so genannte "O-GlcNAc”, ist sogar so wichtig, dass unsere Zellen ohne es gar nicht überleben können.

Forscher am Max-Planck-Institut für Biochemie in Martinsried haben nun einen bisher ungekannten Mechanismus entdeckt, der erklärt wie diese Zuckerreste auf die Proteine wirken und wie sie dadurch die Entwicklung unseres Körpers beeinflussen können. Die Ergebnisse wurden jetzt in der Fachzeitschrift Developmental Cell veröffentlicht.


Um Gene in bestimmten Zellen abzustellen (kein schwarzes Signal) benötigt der Fliegenembryo das Protein Polyhomeotic (Ph), dem kleine Zuckermoleküle (O-GlcNAc, pink) angehängt sind.

Bild: Maria Gambetta / Copyright: MPI für Biochemie

Proteine sind für alle lebenswichtigen Prozesse in den Zellen unseres Körpers verantwortlich. Doch sie sind nicht allein: auf vielen Proteinen befinden sich kleine Zuckermoleküle, die für ihre Funktion wichtig sind. Eine bestimmte Klasse davon, das so genannte O-gebundene N-Acetylglucosamin oder “O-GlcNAc”, ist sogar so wichtig, dass unsere Zellen ohne es gar nicht überleben können. Warum genau das so ist, ist bisher noch nicht ganz klar.

Die Wissenschaftler Maria Cristina Gambetta und Jürg Müller am Max-Planck-Institut für Biochemie haben sich dieser Frage aber nun genähert, indem sie versuchten, einzelne wichtige Moleküle zu identifizieren, die ohne GlcNAc nicht mehr funktionieren. Die Verwendung des Modellorganismus Drosophila, der Fruchtfliege, hat ihnen genau dies ermöglicht.

Die Forscher konnten zeigen, dass Fliegen, deren Zellen kein GlcNAc an die Proteine anhängen können, schwere Störungen in ihrer Entwicklung aufwiesen: konkret „vergaßen“ die Zellen schlichtweg, welches Körperteil sie zu bilden hatten. „Dieses Phänomen war uns schon von Experimenten mit anderen Proteinen bekannt“, erklärt Maria Cristina Gambetta, Erstautorin der Studie.

„Zellen denen Proteine der sogenannten Polycomb-Gruppe fehlen, zeigen genau diese Art von Störungen“. Polycomb Proteine sind so etwas wie das molekulare Gedächtnis der Zellen. Sie schalten gezielt einzelne Gene aus und bestimmen so das Schicksal und die künftigen Aufgaben der Zelle. Doch wie passten diese beiden Ergebnisse zusammen?

In weiteren Analysen fanden die Wissenschaftler heraus, dass ein bestimmtes Polycomb Protein mit dem Namen Polyhomeotic, kurz Ph, unbedingt auf den GlcNAc Zuckeranhang angewiesen ist. Dies hängt laut den Forschern vor allem damit zusammen, dass die einzelnen Ph Moleküle ohne die GlcNAc Anhängsel ungeordnet aneinander geraten und verklumpen.

In dieser Form kann Ph keine Genaktivitäten mehr regeln und verliert daher seinen Einfluss auf das Schicksal der Zellen. „Der Mechanismus, dass GlcNAc-Moleküle ein Verklumpen von Proteinen verhindern, war bisher noch völlig unbekannt“, ordnet Jürg Müller die Ergebnisse ein. „Zudem konnten wir zeigen, dass dies der wichtigste auf GlcNAc beruhende Prozess in der Fruchtfliege ist.“

Aber zurück zu uns Menschen: lassen sich die Ergebnisse der Forscher übertagen? In der aktuellen Studie konnten die Wissenschaftler zeigen, dass das menschliche Ph Protein, welches große Ähnlichkeiten mit dem Fruchtfliegen Ph hat, beim Fehlen der Zuckeranhängsel ebenfalls verklumpt.

„Es wird spannend sein, nun zu sehen, welche Auswirkungen das Fehlen von GlcNAc auf die verschiedenen biologischen Prozesse hat, die durch Ph geregelt werden“, gibt Maria Cristina Gambetta die Richtung für die Zukunft vor. Nachzulesen sind die Ergebnisse jetzt im Fachmagazin Developmental Cell.
[HS]

Originalpublikation:
M.C. Gambetta and J. Müller: O-GlcNAcylation Prevents Aggregation of the Polycomb Group Repressor Polyhomeotic. Developmental Cell, November 26, 2014.
DOI:10.1016/j.devcel.2014.10.020

Kontakt:
Dr. Jürg Müller
Biologie des Chromatins
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: muellerj@biochem.mpg.de
http://www.biochem.mpg.de/mueller

Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: konschak@biochem.mpg.de
Tel. +49 89 8578-2824
http://www.biochem.mpg.de


Weitere Informationen:

http://www.biochem.mpg.de/4876556/058_mueller_glcnac  - Link zur Pressemitteilung
http://www.biochem.mpg.de/mueller  - Seite der Forschungsgruppe
http://www.biochem.mpg.de/news/pressroom  - Übersicht aller Pressemitteilungen des Institutes

Anja Konschak | Max-Planck-Institut für Biochemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht „Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz
08.12.2017 | Technische Universität Dresden

nachricht Die Zukunft der grünen Gentechnik
08.12.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie