Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stau in der Proteinfabrik

05.06.2015

Werden Gene zu langsam abgelesen, droht ein Zell-Burnout

Die Herstellung von Proteinen in Zellen ist ein absolut essentieller Prozess: Treten in der Proteinfabrik Schwierigkeiten auf, wirkt sich das stark auf den Organismus aus –Krankheiten sind häufig die Folge. Forscher vom Max-Planck-Institut für molekulare Biomedizin in Münster haben nun erstmals in lebenden Zellen gezeigt, dass eine winzige fehlende Modifikation an Transfer-RNA (tRNA) die Proteinherstellung verlangsamt und zu Stau in der Proteinfabrik führt.


Dreidimensionales Strukturmodell einer menschlichen tRNA mit Nukleosiden (orange und grau) und chemischen Modifizierungen (farbige Kugeln).

© MPI f. molekulare Biomedizin/ Martin Termathe/ PDB 1FIR


Hefezellen auf einer Agarplatte in Gegenwart eines chemischen Stressors. Mutante Zellen, denen ein Enzym für die Modifizierung von tRNA fehlt (Reihe 2&3) wachsen deutlich langsamer als normale Zellen (Reihe 1).

© MPI f. molekulare Biomedizin/ D. Nedialkova

Die Folge: Proteinketten werden falsch zusammengefaltet. Proteinaggregate, wie wir sie von Alzheimer und Parkinson kennen, sind die Folge. Die Zellen versuchen zwar den Schaden zu reparieren. Dies gelingt aber nicht immer und die Zelle kollabiert. Die Studie liefert damit die erste direkte Erklärung, wie kleinste, fehlerhafte oder fehlende Modifikationen an tRNA neurodegenerative Erkrankungen hervorrufen können.

Der Hefepilz eignet sich hervorragend, um die Proteinherstellung zu untersuchen. Die Ergebnisse solcher Studien können gut auf menschliche Zellen übertragen werden. Denn die Hefezellen sind denen des Menschen sehr ähnlich: Beide besitzen einen Zellkern mit dem Erbgut, haben Mitochondrien, die die Zellen mit Energie versorgen, und verfügen über Ribosomen – die Proteinfabriken der Zellen. Eine Schlüsselfunktion in diesen Fabriken haben die Übersetzer-Moleküle – die ca. 40 verschiedenen tRNA-Moleküle.

Sollen Gene abgelesen werden, werden Kopien der Erbinformation – die sogenannte mRNA Stränge – erstellt. Während Ribosomen die mRNA lesen, flitzen die passenden tRNA-Moleküle durch die Ribosomen und verlängern die Proteinkette um jeweils eine Aminosäure. Dies geschieht mit einer Geschwindigkeit von ungefähr zehn tRNAs pro Sekunde.

Damit die Proteinfabrik wie geschmiert läuft, werden tRNA-Moleküle chemisch getunt. Defekte an solchen Modifikationen - manchmal ein einziges Atom - können zu neurodegenerative Erkrankungen führen. Aber wie genau kann eine so kleine Modifikation solche gravierende Auswirkungen haben?

Danny Nedialkova aus der Forschungsgruppe von Sebastian Leidel am Max-Planck-Institut für molekulare Biomedizin hat die Ablese- und Übersetzungsgeschwindigkeit in Hefezellen und Nematoden untersucht. Sie isolierte die durch Ribosomen besetzten, also aktiv abgelesenen mRNA-Stränge. Mit der „Ribosome Profiling“-Methode analysierte sie Hefezellen mit intakten tRNAs und solche, bei denen eine einzige Modifikation am tRNA-Molekül fehlte.

„Durch diese hochmoderne Technik konnten wir Millionen Moleküle gleichzeitig quantitativ untersuchen“, sagt Nedialkova. „So konnten wir klar nachweisen, dass Ribosomen in Zellen mit defekten tRNA länger brauchen, um bestimmte Wörter des genetischen Codes zu lesen.“

Aber was passiert, wenn es zum Stau in der Proteinfabrik kommt? Die Antwort suchten die Forscher unter allen Genen, die in den Zellen abgelesen werden. „Wir wollten wissen, welche Proteine die Zellen vermehrt benötigen. Deshalb haben wir die Zellen quasi selber gefragt, wie es ihnen geht“, sagt Nedialkova.

Zu ihrer Überraschung entdeckten Leidel und Nedialkova, dass Zellen mit fehlerhaften tRNA-Molekülen mehr Proteine herstellen, die defekte Proteine reparieren. „Zudem fanden wir Protein-Aggregate in den Zellen, ein Phänomen, das man von Alzheimer und Parkinson kennt“, sagt Nedialkova. Das Beseitigen von falsch gefalteten Proteinen kostet die Zellen viel Kraft und Energie. „Das Gleichgewicht in den Zellen kippt und als Folge können die Zellen die Lage nicht mehr meistern – sie sterben“, sagt Nedialkova.

Der Fehler liegt also im Detail, hat aber immense Auswirkungen. Leidel: „Wenn dem tRNA-Molekül nur eine einzige chemische Gruppe fehlt, stockt die Proteinfabrik an unzählig vielen Stellen der mRNA. Es entstehen massive Proteinaggregate, die die Zellen nicht mehr beseitigen können.“ Besonders Nervenzellen reagieren sehr empfindlich auf solche Proteinaggregate. „Unsere Ergebnisse eröffnen daher ganz neue Perspektiven für die Erforschung und Behandlung von neurodegenerativen Erkrankungen“, sagt Leidel.


Ansprechpartner

Dr. Sebastian Leidel
Max-Planck-Institut für molekulare Biomedizin, Münster
Telefon: +49 251 83-46894

E-Mail: sebastian.leidel@mpi-muenster.mpg.de


Dr. Jeanine Müller-Keuker
PR-Referentin

Max-Planck-Institut für molekulare Biomedizin, Münster
Telefon: +49 251 70365-325

E-Mail: j.mueller-keuker@mpi-muenster.mpg.de


Originalpublikation
Danny Nedialkova & Sebastian A. Leidel

Optimization of codon translation rates via tRNA modifications maintains proteome integrity.

Cell, online vorab 4. Juni 2015, doi: 10.1016/j.cell.2015.05.022

Dr. Sebastian Leidel | Max-Planck-Institut für molekulare Biomedizin, Münster
Weitere Informationen:
http://www.mpg.de/9225660/trna-protein-faltung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Krebszellen gegen Chemotherapeutika „immun“ machen
24.08.2017 | Universität Witten/Herdecke

nachricht "Comammox"-Bakterien: Langsam, aber super-effizient
24.08.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ein Feuerwerk der chemischen Forschung

24.08.2017 | Veranstaltungen

US-Spitzenforschung aus erster Hand: Karl Deisseroth spricht beim Neurologiekongress in Leipzig

24.08.2017 | Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eisberge: Mathematisches Modell berechnet Abbruch von Schelfeis

24.08.2017 | Geowissenschaften

Besseres Monitoring der Korallenriffe mit dem HyperDiver

24.08.2017 | Geowissenschaften

Rauch von kanadischen Waldbränden bis nach Europa transportiert

24.08.2017 | Geowissenschaften