Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stau in der Proteinfabrik

05.06.2015

Werden Gene zu langsam abgelesen, droht ein Zell-Burnout

Die Herstellung von Proteinen in Zellen ist ein absolut essentieller Prozess: Treten in der Proteinfabrik Schwierigkeiten auf, wirkt sich das stark auf den Organismus aus –Krankheiten sind häufig die Folge. Forscher vom Max-Planck-Institut für molekulare Biomedizin in Münster haben nun erstmals in lebenden Zellen gezeigt, dass eine winzige fehlende Modifikation an Transfer-RNA (tRNA) die Proteinherstellung verlangsamt und zu Stau in der Proteinfabrik führt.


Dreidimensionales Strukturmodell einer menschlichen tRNA mit Nukleosiden (orange und grau) und chemischen Modifizierungen (farbige Kugeln).

© MPI f. molekulare Biomedizin/ Martin Termathe/ PDB 1FIR


Hefezellen auf einer Agarplatte in Gegenwart eines chemischen Stressors. Mutante Zellen, denen ein Enzym für die Modifizierung von tRNA fehlt (Reihe 2&3) wachsen deutlich langsamer als normale Zellen (Reihe 1).

© MPI f. molekulare Biomedizin/ D. Nedialkova

Die Folge: Proteinketten werden falsch zusammengefaltet. Proteinaggregate, wie wir sie von Alzheimer und Parkinson kennen, sind die Folge. Die Zellen versuchen zwar den Schaden zu reparieren. Dies gelingt aber nicht immer und die Zelle kollabiert. Die Studie liefert damit die erste direkte Erklärung, wie kleinste, fehlerhafte oder fehlende Modifikationen an tRNA neurodegenerative Erkrankungen hervorrufen können.

Der Hefepilz eignet sich hervorragend, um die Proteinherstellung zu untersuchen. Die Ergebnisse solcher Studien können gut auf menschliche Zellen übertragen werden. Denn die Hefezellen sind denen des Menschen sehr ähnlich: Beide besitzen einen Zellkern mit dem Erbgut, haben Mitochondrien, die die Zellen mit Energie versorgen, und verfügen über Ribosomen – die Proteinfabriken der Zellen. Eine Schlüsselfunktion in diesen Fabriken haben die Übersetzer-Moleküle – die ca. 40 verschiedenen tRNA-Moleküle.

Sollen Gene abgelesen werden, werden Kopien der Erbinformation – die sogenannte mRNA Stränge – erstellt. Während Ribosomen die mRNA lesen, flitzen die passenden tRNA-Moleküle durch die Ribosomen und verlängern die Proteinkette um jeweils eine Aminosäure. Dies geschieht mit einer Geschwindigkeit von ungefähr zehn tRNAs pro Sekunde.

Damit die Proteinfabrik wie geschmiert läuft, werden tRNA-Moleküle chemisch getunt. Defekte an solchen Modifikationen - manchmal ein einziges Atom - können zu neurodegenerative Erkrankungen führen. Aber wie genau kann eine so kleine Modifikation solche gravierende Auswirkungen haben?

Danny Nedialkova aus der Forschungsgruppe von Sebastian Leidel am Max-Planck-Institut für molekulare Biomedizin hat die Ablese- und Übersetzungsgeschwindigkeit in Hefezellen und Nematoden untersucht. Sie isolierte die durch Ribosomen besetzten, also aktiv abgelesenen mRNA-Stränge. Mit der „Ribosome Profiling“-Methode analysierte sie Hefezellen mit intakten tRNAs und solche, bei denen eine einzige Modifikation am tRNA-Molekül fehlte.

„Durch diese hochmoderne Technik konnten wir Millionen Moleküle gleichzeitig quantitativ untersuchen“, sagt Nedialkova. „So konnten wir klar nachweisen, dass Ribosomen in Zellen mit defekten tRNA länger brauchen, um bestimmte Wörter des genetischen Codes zu lesen.“

Aber was passiert, wenn es zum Stau in der Proteinfabrik kommt? Die Antwort suchten die Forscher unter allen Genen, die in den Zellen abgelesen werden. „Wir wollten wissen, welche Proteine die Zellen vermehrt benötigen. Deshalb haben wir die Zellen quasi selber gefragt, wie es ihnen geht“, sagt Nedialkova.

Zu ihrer Überraschung entdeckten Leidel und Nedialkova, dass Zellen mit fehlerhaften tRNA-Molekülen mehr Proteine herstellen, die defekte Proteine reparieren. „Zudem fanden wir Protein-Aggregate in den Zellen, ein Phänomen, das man von Alzheimer und Parkinson kennt“, sagt Nedialkova. Das Beseitigen von falsch gefalteten Proteinen kostet die Zellen viel Kraft und Energie. „Das Gleichgewicht in den Zellen kippt und als Folge können die Zellen die Lage nicht mehr meistern – sie sterben“, sagt Nedialkova.

Der Fehler liegt also im Detail, hat aber immense Auswirkungen. Leidel: „Wenn dem tRNA-Molekül nur eine einzige chemische Gruppe fehlt, stockt die Proteinfabrik an unzählig vielen Stellen der mRNA. Es entstehen massive Proteinaggregate, die die Zellen nicht mehr beseitigen können.“ Besonders Nervenzellen reagieren sehr empfindlich auf solche Proteinaggregate. „Unsere Ergebnisse eröffnen daher ganz neue Perspektiven für die Erforschung und Behandlung von neurodegenerativen Erkrankungen“, sagt Leidel.


Ansprechpartner

Dr. Sebastian Leidel
Max-Planck-Institut für molekulare Biomedizin, Münster
Telefon: +49 251 83-46894

E-Mail: sebastian.leidel@mpi-muenster.mpg.de


Dr. Jeanine Müller-Keuker
PR-Referentin

Max-Planck-Institut für molekulare Biomedizin, Münster
Telefon: +49 251 70365-325

E-Mail: j.mueller-keuker@mpi-muenster.mpg.de


Originalpublikation
Danny Nedialkova & Sebastian A. Leidel

Optimization of codon translation rates via tRNA modifications maintains proteome integrity.

Cell, online vorab 4. Juni 2015, doi: 10.1016/j.cell.2015.05.022

Dr. Sebastian Leidel | Max-Planck-Institut für molekulare Biomedizin, Münster
Weitere Informationen:
http://www.mpg.de/9225660/trna-protein-faltung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise