Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie die Sinnesorgane von Bakterien funktionieren

12.01.2009
Bakterien verfügen über vielfältige Mechanismen zur Wahrnehmung von Umweltreizen - Publikation in Nature Structural & Molecular Biology

Bakterien kommen nahezu überall auf der Erde vor und existieren unter den unterschiedlichsten Bedingungen. Damit die mikroskopisch kleinen Lebewesen in ihrer Umwelt überleben können, müssen sie Änderungen schnell erkennen und darauf reagieren.

Wie Bakterien Informationen über ihre Außenwelt durch die Zellmembran in die Zelle leiten, untersuchen Wissenschaftler an der Johannes Gutenberg-Universität Mainz. "Die große Frage ist, wie das Signal über die Zellmembran kommt", teilt Univ.-Prof. Dr. Gottfried Unden vom Institut für Mikrobiologie und Weinforschung dazu mit. Seine Arbeitsgruppe zeigte in Kooperation mit dem Max-Planck-Institut für biophysikalische Chemie in Göttingen, dass strukturelle Änderungen des membranständigen Sensors eine wichtige Rolle beim Signaltransfer spielen.

Einige Bakterien besitzen über 100 verschiedene Sensoren, um ihre Außenwelt wahrzunehmen. Die Sensoren stellen beispielsweise fest, ob außerhalb der Zelle Nährstoffe oder Sauerstoff vorliegen oder wie die Temperatur- und Lichtverhältnisse sind. Sie sitzen meist in der Zellmembran, der Grenzschicht der Bakterien zur Umwelt, und übermitteln das Signal ins Innere der Zelle. Wie das funktioniert, kann nun dank neuer Sensorpräparate und Methoden festgestellt werden. Die Mainzer Wissenschaftler haben dazu einen Sensor, der einen wichtigen Bakterien-Nährstoff erkennt, so verändert, dass er mit neuen spektroskopischen Methoden untersucht werden konnte.

"Dabei ist zum ersten Mal die Festkörper-Kernspinresonanz-Spektroskopie eingesetzt worden, um große Proteine in der Membran zu untersuchen", erklärte Unden. In Verbindung mit der Funktionsanalyse zeigt die Strukturanalyse der Göttinger Biophysiker um Prof. Marc Baldus wichtige Details der Signalübertragung: Ein Reizmolekül, in diesem Fall Carbonsäure, bindet in einem Bereich des Sensors, der aus der Zelle herausragt. Dadurch scheint sich die geordnete Struktur des Sensors im Inneren der Zelle aufzulösen, die im reizlosen Zustand vorliegt. Diese Plastizität scheint die Grundlage für die nun folgende Aktivierung der enzymatische Reaktionskette zu sein, die in der Zelle abläuft und schließlich zu der Zellantwort - etwa der Synthese neuer Enzyme oder Ausprägung von Schutzmechanismen - führt.

Außer den neuen Erkenntnissen zur Signalübertragung, die in Nature Structural and Molecular Biology publiziert wurden, haben die Mainzer Mikrobiologen eine neue, ungewöhnliche Art der Signalerkennung durch den gleichen Sensor mit der Bezeichnung DcuS entdeckt und im Journal of Biological Chemistry vorgestellt. Bakterien reagieren demnach auf die Situation außerhalb der Zelle, registrieren aber zudem, was im Zellinnern abläuft. So erkennt nicht nur der Sensor selbst den Reiz. Zusätzlich stellt das Transportsystem, welches das Substrat in die Zelle aufnimmt, einen zweiten Reizeingang dar. Wird das Substrat, die Carbonsäure, aufgenommen, dann teilt der Transporter dies dem Sensor mit. "Wir konnten den Bereich des Transporters identifizieren, der die Funktion des Sensors steuert", so Unden. "Dabei ist der Transporter für die Funktion des Sensors enorm wichtig, denn ohne den Transporter funktioniert der Sensor nicht und befindet sich immer in einem aktiven Zustand." Der Mainzer Wissenschaftler vermutet, dass diese funktionsabhängige Messung der Stoffwechsel- und Transportaktivität für die Zelle oft wichtiger ist als eine reine Messung der Konzentration.

Originalveröffentlichungen:
Manuel Etzkorn, Holger Kneuper, Pia Dünnwald, Vinesh Vijayan, Jens Krämer, Christian Griesinger, Stefan Becker, Gottfried Unden, Marc Baldus
Plasticity of PAS domain and potential role for signal transduction in the membrane-embedded histidine kinase DcuS.

Nature Structural & Molecular Biology, Volume 15, 1031-1039, October 2008 (Selected as "Article of the month")

Alexandra Kleefeld, Bianca Ackermann, Julia Bauer, Jens Krämer, Gottfried Unden
The fumarate/succinate antiporter DcuB of Escherichia coli is a bifunctional protein with sites for regulation of DcuS dependent gene expression.

Journal of Biological Chemistry, Volume 284, 265-275, January 2009

Kontakt und Informationen:
Univ.-Prof. Dr. Gottfried Unden
Institut für Mikrobiologie und Weinforschung
Johannes Gutenberg-Universität Mainz
Tel. 06131 39-23550
Fax 06131 39-22695
E-Mail: unden@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de/FB/Biologie/Mikrobiologie/index.html
http://www.nature.com/nsmb/journal/v15/n10/full/nsmb.1493.html
http://www.jbc.org/cgi/content/abstract/M807856200v1

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteine entdecken, zählen, katalogisieren
28.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an
28.06.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive