Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Schleife macht den Unterschied

02.10.2012
Wissenschaftler aus Marburg und Stuttgart haben herausgefunden, wie sich krankmachende Pilze in den Schleimhäuten ihrer Wirte einnisten – und wie sie die Oberflächen medizinischer Geräte verpesten.
Die Forscher veränderten die Struktur von Proteinen, die dafür verantwortlich sind, dass sich die Pilzzellen am Wirtsgewebe anheften; minimale Veränderungen reichen aus, um die Bindungspartner zu wechseln, berichten die Forscher um Professor Dr. Lars-Oliver Essen und Professor Dr. Hans-Ulrich Mösch in der Wissenschaftszeitschrift PNAS. Die Autoren hoffen, dass ihre Ergebnisse zu neuen Medikamenten führen, mit denen sich die Einnistung der Pilze verhindern lässt.

„Unsere Untersuchungen decken auf, welche Strukturen darüber entscheiden, wo sich die Oberflächenproteine der Pilze anheften und wo nicht“, erklärt der Biochemiker Lars-Oliver Essen vom Biomedizinischen Forschungszentrum der Philipps-Universität, der als Seniorautor der Studie firmiert. Pilzinfektionen sind eine häufige Krankheitsursache und beruhen auf dem Vermögen der Einzeller, sich an Schleimhäute und Epithelien ihrer Wirte anzuheften.

Röntgenkristallstruktur von EPA1-Adhesin (links) und die Bindungstasche für Oberflächenmerkmale des Wirtes (rechts). Bezeichnet sind die Schleifen L1, L2, L3, CBL1 und CBL2 (orangerot, hellblau), die an der Anheftung an die Zuckerstrukturen des Wirtes (gelbe und blaue Ringe) beteiligt sind.

(Abbildung: Philipps-Universität / AG Essen)

Der Hefepilz Candida glabrata befällt den Urogenitaltrakt und die Blutbahn von Patienten, deren Immunsystem geschwächt ist; für die Betroffenen kann eine Infektion zum Tode führen. „Herkömmliche Medikamente gegen Pilze haben sich als wirkungslos erwiesen, so dass die Wirkstoff-Forschung fieberhaft nach Alternativen sucht“, erläutert Mitverfasser Hans-Ulrich Mösch vom Institut für Genetik der Philipps-Universität.

Der Mikroorganismus kann vermutlich deshalb so schnell neue Wirtsgewebe besiedeln, weil sich seine Anheftungsproteine besonders effektiv an neue Umweltanforderungen anpassen – so bildet Candida beispielsweise Biofilme auf Harnkathetern. Anheftungsproteine gelten daher als bevorzugte Ziele für neue Therapieansätze, um den Pilz zu bekämpfen. Die meisten dieser so genannten EPA-Proteine (Epitheliale Adhäsine) sind jedoch chemisch und biologisch nur unzureichend charakterisiert.

Damit sich Candida in die Schleimhaut einnisten kann, interagieren die Anheftungsproteine des Pilzes mit ganz bestimmten Zuckermolekülen wie Laktose oder Galaktose, die auf der Oberfläche von Wirtsepithelien oder Schleimhäuten verankert sind. Die Stuttgarter Koautoren um Dr. Steffen Rupp vom Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB untersuchten dies mit Hilfe von Schleimhautmodellen direkt im Reagenzglas.

Wie die Proteinstruktur im Detail aussieht, analysierten die Marburger Wissenschaftler und ihre Kollegen am Beispiel des Adhäsins EPA1. Für die Wahl des richtigen Bindungspartners sind drei schleifenförmige Abschnitte des Proteins verantwortlich, die eine Tasche bilden, in die das Zuckermolekül genau passt – kleinste Abweichungen in der Schleifenstruktur bewirken, dass andere Zuckermoleküle gebunden werden.

Die Forscher präsentieren Varianten von EPA1, die an ähnlichen Stellen binden wie die nah verwandten Proteine EPA2, EPA3 und EPA6. „Aufgrund unserer Befunde könnten einmal Wirkstoffe entwickelt werden, die gegen Pilzbefall helfen, indem sie eine Anheftung an die Schleimhaut verhindern“, hoffen die Autoren.

Die Arbeit der Wissenschaftler wurde durch die Deutsche Forschungsgemeinschaft sowie im Rahmen des Zentrums für Synthetische Mikrobiologie der hessischen Landesexzellenzinitiative „LOEWE“ finanziell gefördert.

Online-Vorabveröffentlichung: Manuel Maestre-Reyna & al.: Structural basis for promiscuity and specificity during Candida glabrata invasion of host epithelia, Proc. Natl. Acad. Sc. USA Early Online Edition (2012), DOI:10.1073/pnas.1207653109,

URL: http://www.eurekalert.org/pio/pnas.php

Weitere Informationen:
Ansprechpartner: Professor Dr. Hans-Ulrich Mösch,
Fachgebiet Molekulare Genetik
Tel.: 06421 28-23013, -23497 (Arbeitsgruppe)
E-Mail: moesch@staff.uni-marburg.de

Johannes Scholten | idw
Weitere Informationen:
http://www.uni-marburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften