Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was schädigt die Synapsen bei Alzheimer?

29.02.2012
Prof. Jochen Herms, neuer Arbeitsgruppenleiter am DZNE und Lehrstuhlinhaber an der LMU, untersucht mit hochentwickelten Mikroskopiemethoden die zellulären Grundlagen neurodegenerativer Erkrankungen.

Der Untergang der Synapsen – der Kontaktstellen zwischen Nervenzellen – gilt als die zentrale Ursache für neurodegenerative Erkrankungen wie Alzheimer, Prionerkrankungen oder Parkinson. Warum Synapsen degenerieren und was man dagegen tun kann, untersucht Prof. Jochen Herms in seiner neuen Arbeitsgruppe am Deutschen Zentrum für Neurodegenerative Erkrankungen (DZNE), Standort München. Herms ist zusätzlich Inhaber des Lehrstuhls "Translationale Forschung auf dem Gebiet der Neurodegeneration" an der Ludwig-Maximilians-Universität München.

Welche Proteine sind an der Schädigung der Synapsen beteiligt? Welche zellulären Veränderungen spielen eine Rolle und welche Wirkstoffe könnten dem Untergang entgegenwirken? Um diese Fragen zu beantworten haben sich Herms und seine Kollegen auf die in vivo Zweiphotonenmikroskopie spezialisiert. Mit diesem Verfahren lassen sich strukturelle Veränderungen an den Synapsen im Gehirn der Maus über Wochen bis Monate hinweg zu verfolgen. "Das ist sehr viel sensitiver, als das Verhalten von Tieren zu beobachten und es lassen sich auch besser Rückschlüsse auf den Menschen ziehen – zumindest wenn man von einer primär synaptischen Störung als Ursache neurodegenerativer Erkrankungen ausgeht", erklärt Herms.

Schlagzeilen machte Herms mit einem Ansatz zur Entwicklung einer neuen Methode zur Alzheimer-Früherkennung bzw. Therapiekontrolle. Mit dieser Methode sollen Tau-Aggregate, die sich bei Alzheimer im zentralen Nervensystem anreichern, in der Netzhaut des Auges nachgewiesen werden. Noch testen die Wissenschaftler die Methode im Tiermodell. Lässt sich das Verfahren auf den Menschen übertragen, wäre es möglich, neue diagnostische Verfahren für die Alzheimer-Erkrankung zu entwickeln. "Eine Früherkennung ist gerade bei Alzheimer sehr wichtig, denn die Krankheit beginnt schon lange, bevor die ersten Symptome auftauchen. Dass es noch nicht gelungen ist, eine wirksame Therapie gegen Alzheimer zu etablieren, liegt vermutlich auch daran, dass in den bisherigen klinischen Studien mit der Therapie zu spät begonnen wurde", erklärt Herms.

Über seine Berufung ans DZNE freut sich Herms sehr. "Wir kommen in der Alzheimerforschung nur weiter, wenn wir gängige Hypothesen kritisch hinterfragen und neue Hypothesen entwickeln. Die starke Unterstützung, die wir am DZNE bekommen, und die kritische Masse an Wissenschaftlern am DZNE gibt uns dazu das richtige Forschungsumfeld", sagt er. Am DZNE wird sich der Neuropathologe ganz auf die Grundlagenforschung konzentrieren. Sein medizinischer Hintergrund und sein neuropathologisches Wissen sind für seine Forschung ein wesentlicher Vorteil: "Ein genaues Bild von der Erkrankung beim Menschen hilft mir sehr, die Relevanz bestimmter Beobachtungen im Tiermodell besser einschätzen zu können", sagt Herms.

Jochen Herms studierte Medizin, promovierte an der Universitätsklinik Hamburg-Eppendorf und arbeite am anschließend am Max-Planck-Institut für Biophysikalische Chemie in Göttingen im Labor von Otto Creutzfeldt. 1999 schloss er die Facharztausbildung zum Neuropathologen ab, wurde leitender Oberarzt und habilitierte über die Funktion des Prionproteins in Neuronen an der Universität Göttingen. Seit 2001 lehrt er als Professor für Neuropathologie an der Ludwig-Maximilians-Universität München und folgte 2011 einem Ruf auf einen Lehrstuhl für Translationale Forschung auf dem Gebiet der Neurodegeneration an der Universität München und dem Deutschen Zentrum für Neurodegenerative Erkrankungen am Standort München.

Kontaktinformation:
Prof. Dr. Jochen Herms
Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)
c/o Ludwig-Maximilians-Universität München
Zentrum für Neuropathologie
Feodor-Lynen Str. 23
81377 München
Tel.: +49 (0) 89 / 2180-78010
Email: jochen.herms(at)dzne.de
Daniel Bayer
Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)
Presse- und Öffentlichkeitsarbeit
Tel: +49 (0) 228 43302 /263
Email: daniel.bayer(at)dzne.de

Daniel Bayer | idw
Weitere Informationen:
http://bit.ly/arbeitsgruppe_herms
http://www.dzne.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment

25.09.2017 | Biowissenschaften Chemie

Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas

25.09.2017 | Physik Astronomie

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten