Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rasche Hilfe bei Rauchgasvergiftungen

04.09.2012
Rauchvergiftungen werden unter anderem durch Salze der Blausäure, so genannte Cyanide, verursacht. Die rasche Verabreichung eines Gegengiftes ist oft lebensrettend.
Bis anhin stand den Notfallärzten kein Blausäure-Schnelltest zur Verfügung, sodass Fehldiagnosen in Kauf genommen werden mussten. Jetzt haben Chemiker der Universität Zürich ein einfaches Verfahren entwickelt, das Cyanide im Blut zuverlässig in zwei Minuten nachweist.

Cyanidvergiftungen treten u.a. auf, wenn bei Bränden in geschlossenen Räumen Rauchgase eingeatmet werden. Cyanide sind Salze der Blausäure, die die zelluläre Atmung blockieren. Vergiftungen mit Cyaniden verlaufen daher rasch und oft tödlich. Für eine erfolgreiche Behandlung ist Schnelligkeit entscheidend. Bis anhin dauerte der Nachweis von Cyaniden im Blut bis zu einer Stunde und konnte nur mit entsprechender Ausrüstung im Labor durchgeführt werden.

Zweistufiges Verfahren zur Bestimmung von Cyanid im Blut: 1) Der Chemosensor wird zur Blutprobe gegeben. Falls Cyanid im Blut vorhanden ist, bildet das Cyanid mit dem Chemosensor einen violetten Komplex. Die Lösung wird durch eine Spritze gepresst, die eine feste Phase enthält. 2) Die feste Phase wird mit Wasser gespült, um das Blut aus der festen Phase zu lösen. Zurück bleibt der violette Komplex, den das Cyanid mit dem Chemosensor gebildet hat.

Bild: UZH

Dieses Nachweisverfahren eignete sich schlecht für Notfälle, sodass das Gegengift oft in Ungewissheit appliziert werden musste. Nun ist es Chemikern der Universität Zürich gelungen, Cyanide in ein bis zwei Minuten und ohne spezielle Laborausrüstung im Blut nachzuweisen. Die beiden Chemiker Christine Männel-Croisé und Felix Zelder von der Universität Zürich kombinieren dabei einen Cyanid-Farbtest mit einer Extraktionsmethode.

Das neu entwickelte Verfahren arbeitet mit einem winzigen Tropfen Blut. Dieser wird in einer Nachweisampulle mit einem pH-Puffer, Wasser, einem Kobalt-basierten Chemosensor sowie einer Festphase zusammengebracht. Enthält das Blut Cyanidverbindungen, färbt sich die Festphase violett.

Schneller, einfacher, vielseitiger

«Einzigartig an unserem Nachweis ist, dass er ohne zusätzliche Geräte auskommt, rund zwei Minuten dauert, nur einen Tropfen Blut braucht und durch das blosse Auge erfolgt», sagt Felix Zelder. Mit dem neuen Verfahren lässt sich die Menge an Cyaniden im Blut und damit der Schweregrad der Vergiftung bestimmen. Dies ermöglicht es, die Dosis des zu verabreichenden Gegenmittels festzulegen und dessen Wirksamkeit während der Behandlung laufend zu prüfen. «Unsere Methode erfüllt alle Anforderungen, um bei Brandopfern in Notfallsituationen Cyanide nachweisen zu können», erklärt Christine Männel-Croisé. Sie und Felix Zelder sind zurzeit in Verhandlungen mit Notfallärzten, um ihr Verfahren in Akutsituationen zu testen.

Literatur:
Christine Männel-Croisé and Felix Zelder. Anal. Methods, 6 July 2012. doi: 10.1039/c2ay25595b

Kontakt:
Dr. Felix Zelder
Anorganisch-chemisches Institut
Universität Zürich
Tel. +41 44 635 46 24
E-Mail: zelder@aci.uzh.ch

Nathalie Huber | Universität Zürich
Weitere Informationen:
http://www.uzh.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie