Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Qualitätssicherung in der Zelle: Zelluläres Kontroll-Protein überwacht Qualität von Antikörpern

15.06.2009
Antikörper sind zentrale Waffen des Immunsystems. Sie erkennen Viren und Bakterien und alarmieren daraufhin die körpereigene Abwehr.

Biochemiker der Technischen Universität München (TUM) haben nun den Ablauf der Qualitätskontrolle entschlüsselt, mit der die Zelle sicherstellt, dass nur korrekt gefaltete Antikörper ausgeliefert werden.

Das Verständnis dieses Qualitätssicherungsschritts könnte die Bemühungen um die biotechnologische Herstellung von Antikörpern entscheidend voran bringen. Die Forscher präsentieren ihre Ergebnisse in der aktuellen Ausgabe der Zeitschrift Molecular Cell.

Ohne Antikörper würde das menschliche Immunsystem nicht funktionieren. Sie erkennen Moleküle an der Oberfläche von Eindringlingen wie Bakterien oder Viren, heften sich an und aktivieren damit die Abwehrreaktionen des Immunsystems. In jüngster Zeit haben Antikörper auch große Bedeutung als Medikamente in der Krebstherapie erlangt. Auch für viele andere Anwendungen, insbesondere für den Nachweis geringster Spuren einer Substanz, eignet sich das Schlüssel-Schloss-Prinzip der Antikörper. Die Wissenschaftler versuchen nun zu verstehen, wie Antikörper in der Natur gebildet werden, um gezielt Antikörper mit speziellen Eigenschaften herstellen zu können.

"Die sichere Erkennung gefährlicher Eindringlinge ist für den Körper lebenswichtig," erläutert Professor Johannes Buchner vom Lehrstuhl für Biotechnologie der TUM. "Fehlfunktionen, wie Autoimmunkrankheiten, richten schweren Schaden im Organismus an. Die Natur hat daher eine präzise Qualitätskontrolle bei der Synthese von Antikörpern geschaffen." In der aktuellen Ausgabe des renommierten Fachjournals Molecular Cell berichten Matthias J. Feige und Johannes Buchner, wie diese Qualitätskontrolle auf molekularer Ebene in der Zelle funktioniert.

Antikörper sind komplexe Eiweiße, die in spezialisierten Zellen aus vier Aminosäureketten zusammengesetzt werden. In einer Kooperation mit Professor Horst Kessler und dem Bayerischen NMR-Zentrum an der TU München, sowie mit Professor Linda Hendershot in Memphis, USA, entdeckten die Autoren einen Abschnitt des Antikörpermoleküls, der aufgrund seiner besonderen strukturellen Eigenschaften den Schlüssel zum Verständnis der Qualitätskontrolle darstellt. In den Eiweißketten gibt es zwei Bereiche, die strukturell sehr ähnlich sind. Die TUM Forscher entdeckten, dass überraschenderweise einer sich spontan faltete , der andere jedoch nicht. Diesem auf den ersten Blick unverständlichen Unterschied gingen die Wissenschaftler weiter nach und klärten den zugrunde liegenden Mechanismus auf.

An die ungefaltete Kette lagert sich, solange der Antikörper noch nicht vollständig aufgebaut ist, ein anderes Protein an, das so genannte Chaperon BiP. Es verhindert, dass der unfertige Antikörper aus der Zelle ausgeschleust werden kann. Erst die noch fehlende Untereinheit des Antikörpers induziert die spontane Faltung, wobei das Chaperon abgelöst wird und den fertigen Antikörper frei gibt. Fehlt diese Untereinheit oder ist sie nicht korrekt gefaltet, wird der Antikörper zurückgehalten und schließlich wieder abgebaut.

Diese Entdeckung liefert nicht nur grundlegende Einsichten in die molekularen Funktionsprinzipien unseres Immunsystems, sie ermöglicht es auch, Antikörper für die biotechnologische Produktion zu optimieren.

Die Arbeiten wurden unterstützt von der Studienstiftung des deutschen Volkes, dem National Institutes of Health Grant GM54068, dem Cancer Center CORE Grant CA21765, den American Lebanese Syrian Associated Charities of St. Jude Children's Research Hospital, dem SFB 749 der Deutschen Forschungsgemeinschaft (DFG), dem Fonds der Chemischen Industrie und der Bayerischen Forschungsstiftung.

Originalpublikation:
An Unfolded CH1 Domain Controls the Assembly and Secretion of IgG Antibodies
Matthias J. Feige, Sandra Groscurth, Moritz Marcinowski, Yuichiro Shimizu, Horst Kessler, Linda M. Hendershot, and Johannes Buchner
Molecular Cell 34, 569-579, June 12, 2009, DOI: 10.1016/j.molcel.2009.04.028
Link: http://www.cell.com/molecular-cell/abstract/S1097-2765(09)00304-9
Kontakt:
Prof. Dr. Johannes Buchner
Technische Universität München
Chemie Department
Lichtenbergstraße 4
D-85748 Garching
Tel.: +49 89 289 13341
Fax: +49 89 289 13345
E-Mail: Johannes.Buchner@ch.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://portal.mytum.de/welcome
http://www.chemie.tu-muenchen.de/biotech/index.html
http://www.cell.com/molecular-cell/abstract/S1097-2765(09)00304-9

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik