Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Proteinkomplexe Muskelfasern stabilisieren: RUB-Forscher finden gleichen Mechanismus wie in DNA

18.01.2012
Gleicher Mechanismus für Muskelproteine wie für DNA gefunden
Forscherteam mit RUB-Beteiligung berichtet in Genes and Development

Der gleiche Mechanismus, der die Erbsubstanz im Zellkern stabilisiert, ist auch für die Struktur und Funktion von Muskelzellen der Wirbeltiere entscheidend. Das haben RUB-Forscher um Prof. Dr. Wolfgang Linke (Institut für Physiologie) in Kooperation mit amerikanischen und deutschen Kolleginnen und Kollegen nachgewiesen.


Muskelfibrillen sind die Bausteine der Muskelzellen, die regelmäßig quergestreift sind (blau). Ihre Elastizität erhalten sie durch das Riesenprotein Titin (rot). Das methylierte Hitzeschockprotein Hsp90 bindet zusammen mit der Methyltransferase Smyd2 (grün) an die elastischen Titinfedern der Muskelfibrillen und stabilisiert sie. Die Teilabbildung unten rechts zeigt die gemeinsame Lokalisation von Smyd2 und elastischer Titinregion. Abbildung: Prof. Wolfgang A. Linke

Ein Enzym heftet eine Methylgruppe an das Protein Hsp90, das daraufhin einen Komplex mit dem Muskelprotein Titin bildet. Störten die Forscher dieses Proteinnetzwerk durch genetische Manipulation bei Zebrafischen, löste sich die Muskelstruktur teilweise auf. Die Wissenschaftler zeigten damit, dass die Methylierung auch außerhalb des Zellkerns bedeutend ist. Ihre Ergebnisse veröffentlichten sie in Genes and Development.

Methylierung im Zellkern

Enzyme, genannt Methyltransferasen, übertragen im Zellkern Methyl (CH3)-Gruppen auf bestimmte Abschnitte der Erbsubstanz. So markieren sie aktive und inaktive Abschnitte der Gene. Auch Zellkernproteine werden methyliert, am häufigsten an der Aminosäure Lysin. An den methylierten Regionen bilden sich Proteinkomplexe, die zum Beispiel wichtig für Reparatur und Replikation der Erbsubstanz sind. Methyltransferasen kommen aber nicht nur im Zellkern, sondern auch in der Zellflüssigkeit (Zytoplasma) vor. Bislang war jedoch weitgehend unbekannt, welche Proteine sie dort methylieren und wie sich die Methylierung funktional auswirkt.

Erstmals gezeigt: Methylierung im Zytoplasma fördert Proteinkomplexbildung

Die Forscher identifizierten zunächst ein Enzym, das hauptsächlich im Zytoplasma vorkommt und die Aminosäure Lysin methyliert (Smyd2). Anschließend bestimmten sie den Interaktionspartner des Enzyms Smyd2, der sich als das Hitzeschockprotein Hsp90 herausstellte. Die Wissenschaftler zeigten weiterhin, dass Smyd2 und methyliertes Hsp90 einen Komplex mit dem Muskelprotein Titin bilden. „Titin ist das größte Eiweiß des menschlichen Körpers und vor allem für seine Rolle als elastische Feder in Muskelzellen bekannt“, erklärt Linke. „Genau diese elastische Region des Titins wird durch die Bindung von methyliertem Hsp90 geschützt.“

Titin braucht Schutz durch methylierte Proteine

In Skelettmuskelzellen des Zebrafisches erforschte Linkes Team, was passiert wenn der Schutz durch das methylierte Hitzeschockprotein wegfällt. Gentechnisch veränderten sie den Organismus so, dass er das Enzym Smyd2 nicht mehr bildete, was die Methylierung von Hsp90 unmöglich machte. Ohne methyliertes Hsp90 war die elastische Titinregion instabil und die Muskelfunktion stark eingeschränkt; die sonst regelmäßige Muskelstruktur löste sich teilweise auf.

Titelaufnahme

L.T. Donlin, C. Andresen, S. Just, E. Rudensky, C.T. Pappas, M. Kruger, E.Y. Jacobs, A. Unger, A. Zieseniss, M.-W. Dobenecker, T. Voelkel, B.T. Chait, C.C. Gregorio, W. Rottbauer, A. Tarakhovsky, W.A. Linke (2012): Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization, Genes and Development, doi: 10.1101/gad.177758.111

Weitere Informationen

Prof. Dr. Wolfgang Linke, Abteilung für Kardiovaskuläre Physiologie, Institut für Physiologie, Medizinische Fakultät der Ruhr-Universität, 44780 Bochum, Tel.: 0234/32-29101

wolfgang.linke@rub.de

Kardiovaskuläre Physiologie an der RUB
http://www.py.ruhr-uni-bochum.de/kardp/Index.html
Redaktion
Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops