Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteine weich gebettet

02.06.2009
Biochips, auf denen Tausende von DNA-Abschnitten befestigt sind, werden vielfach eingesetzt, um das Erbgut zu untersuchen. Fachleute hätten zudem gerne Biochips, auf denen Proteine verankert sind. Dazu ist eine Gelschicht nötig, die sich nun industriell herstellen lässt.

Mehrere Tausend Testfelder sitzen dicht nebeneinander auf kleinster Fläche – etwa auf Biochips. Sie ermöglichen schnelle Analysen von Stoffen, etwa Diagnosen von Allergenen im Blut. Für DNA-Tests sind diese Biochips bereits recht weit verbreitet.

Bei Proteinen – den Eiweißen, die nach der DNA-Bauanleitung zusammengebaut werden – ist es jedoch meist schwierig, solche Chips herzustellen. Denn die Proteine haben eine definierte dreidimensionale Struktur, über die sie mit anderen Molekülen wechselwirken und so biologische Vorgänge steuern. Binden sie an eine Oberfläche, etwa der eines Biochips, wird diese Struktur zerstört. Das Protein kann seine Aufgabe nicht mehr erfüllen.

Forscher des Fraunhofer-Instituts für Angewandte Polymerforschung IAP in Potsdam-Golm haben dieses Problem nun gelöst. »Wir haben ein Gel – ein Netzwerk aus organischen Molekülen – entwickelt, das wir auf die Oberfläche des Biochips aufbringen können«, sagt Dr. Andreas Holländer, Gruppenleiter am IAP. »Diese Gelschicht ist nur etwa 100 bis 500 Nanometer dick und besteht zum größten Teil aus Wasser. So gaukeln wir dem Protein vor, dass es sich in Lösung befindet, auch wenn es chemisch am Netzwerk angebunden ist. Es fühlt sich quasi wie in seiner natürlichen Umgebung – seine Funktionsfähigkeit bleibt auf dem Biochip erhalten.« Auch andere Forschergruppen arbeiten an solchen Hydrogelen.

Das Besondere an dem neuen Herstellungsverfahren: Es ist industrietauglich, die Gelschichten lassen sich im großen Maßstab kostengünstig produzieren. Üblicherweise gibt es zwei Ansätze, solche Netzwerke herzustellen. Bei dem ersten bindet man komplette Polymere chemisch an die Oberfläche. Bei dem zweiten Verfahren baut man die Polymermoleküle Baustein für Baustein auf die Oberfläche. »Unser Verfahren ist eine Mischung zwischen den beiden bekannten. Wir verwenden größere molekulare Bausteine und bauen damit das Netzwerk auf der Oberfläche auf«, erklärt Falko Pippig, der seine Promotion am IAP über dieses Thema schreibt.

Da die Hydrogelschichten sehr dünn sind, kommen von außen zugegebene Stoffe schnell zum Protein, das sich in und auf dieser Schicht befindet. Beispielsweise können Mediziner Blut oder Urin auf den Chip geben und Krankheiten diagnostizieren. Die Verfahrensgrundlagen haben die Forscher bereits entwickelt. Proteinbiochips könnten so künftig alltäglich werden in den Laboren – die Zahl der möglichen Anwendungen übersteigt die der DNA-Chips bei weitem.

Dr. rer. nat. Andreas Holländer | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.iap.fraunhofer.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie