Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteinaggregate schützen Zellen im Alter

08.05.2015

Max-Planck-Forscher studieren altersbedingte Veränderungen im Proteinhaushalt

Während ein Organismus altert, kommt es in seinen Zellen zu einem allmählichen Verlust der Qualitätskontrolle für Proteine. Das führt vermehrt zu deren Verklumpen und der Bildung so genannter Aggregate. Mit einem umfassenden Ansatz haben Forscher um F.-Ulrich Hartl und Matthias Mann am Max-Planck-Institut für Biochemie (MPIB) in Martinsried bei München nun altersbedingte Änderungen in der Proteinzusammensetzung untersucht.


Muskelzelle eines langlebigen Fadenwurms: Chaperon-reiche Proteinaggregate (grün) reichern sich an und schützen die Zelle im Alter.

© Max-Planck-Institut für Biochemie / Prasad Kasturi

Die in der Fachzeitschrift Cell publizierten Ergebnisse zeigen, dass im Laufe des Lebens die Mengenverhältnisse von Proteinen stark verschoben werden. Das wirft auch ein neues Licht auf die Herkunft und Funktion von Proteinaggregaten. An der Studie sind auch Wissenschaftler aus Cambridge (Christopher Dobson und Michele Vendruscolo), sowie aus Chicago (Richard Morimoto) beteiligt.

Altern ist ein komplexer biologischer Prozess, der häufig mit der Ablagerung von Proteinaggregaten in den Zellen einhergeht. Wissenschaftler nennen sie oft als Ursache für verschiedene neurodegenerative Erkrankungen wie Alzheimer, Chorea Huntington oder Parkinson. Ihre genaue Rolle ist aber noch nicht abschließend geklärt.

Ein Forscherteam unter der Leitung von F.-Ulrich Hartl am Max-Planck-Institut für Biochemie verwendete jetzt den winzigen Fadenwurm Caenorhabditis elegans (kurz: C. elegans) als Modellorganismus, um zu analysieren, wie sich das Proteom, die Gesamtheit der Proteine, im Laufe des Lebens verändert. "Die Studie ist die umfangreichste ihrer Art und erfasst mehr als 5000 verschiedene Proteine zu mehreren Zeitpunkten während der Alterung", erklärt Prasad Kasturi, zusammen mit Dirk Walther Erstautor der Studie.

Die Forscher konnten zeigen, dass sich das Proteom der Würmer im Laufe der Zeit tatsächlich umfangreich wandelt. Die Mengen von etwa einem Drittel aller Proteine ändern sich deutlich und verschieben so deren ursprüngliches Verhältnis zueinander.

Diese Umverteilung beeinträchtigt die korrekte Funktion der Proteine und überfordert darüber hinaus die Qualitätskontrolle der Zelle. In der Folge bilden überschüssige Proteine vermehrt Aggregate, was letztlich zum Tod der Tiere führt.

Auf diesen Ergebnissen aufbauend analysierten die Forscher, wie genetisch veränderte Würmer mit einer wesentlich längeren oder kürzeren Lebensdauer mit diesen Änderungen zurechtkommen. "In kurzlebigen Tieren ist das Ungleichgewicht der Proteine noch ausgeprägter und setzt früher ein. Im Gegensatz dazu zeigen langlebige Würmer eine Proteomzusammensetzung, die deutlich weniger von der der Jungtiere abweicht", so Kasturi.

Überraschend war für die Wissenschaftler vor allem, dass speziell die langlebigen Würmer überschüssige und schädliche Proteine in Form von unlöslichen Aggregaten ablagerten und an diesen Stellen spezielle Hilfsproteine, so genannte Chaperone, konzentriert vorkamen. Da Chaperone anderen Proteinen helfen, ihre korrekte Faltung zu erlangen, vermuten die Forscher, dass so die funktionstüchtigen Proteine geschützt und die toxische Wirkung der Aggregate vermindert werden.

„Die Zellen bilden offenbar gezielt Chaperon-reiche Proteinaggregate als Schutzmechanismus - daher scheinen diese ein wichtiger Bestandteil des gesunden Alterns zu sein“, erklärt Katsuri. Tatsächlich ist bekannt, dass in den Gehirnen gesunder älterer Menschen unlösliche Proteinaggregate vorkommen. Bisher hatten Forscher angenommen, dass Neurodegeneration und Demenz vor allem durch veränderte Proteinvarianten in Aggregaten verursacht werden.

Diese Annahme könnte nun auf dem Prüfstand stehen: "Aggregate sind eindeutig nicht immer schädlich. Die Suche nach Möglichkeiten, schädliche Proteine in Form von unlöslichen Ablagerungen zu konzentrieren, könnte eine nützliche Strategie sein, um altersbedingte, neurodegenerative Krankheiten zu bekämpfen", ordnet F.-Ulrich Hartl die Studie ein.


Ansprechpartner
 
Prof. Dr. Franz-Ulrich Hartl
Max-Planck-Institut für Biochemie, Martinsried
Telefon: +49 89 8578-2244
Fax: +49 89 8578-2211
E-Mail: uhartl@biochem.mpg.de
 

Prof. Dr. Matthias Mann
Max-Planck-Institut für Biochemie, Martinsried
Telefon: +49 89 8578-2557
Fax: +49 89 8578-2219
E-Mail: mmann@biochem.mpg.de 

Anja Konschak
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie, Martinsried
Telefon: +49 89 8578-2824
Fax: +49 89 8578-3777
E-Mail: konschak@biochem.mpg.de


Originalpublikation


Walther DM*, Kasturi P*, Zheng M, Pinkert S, Vecchi G, Ciryam P, Morimoto RI, Dobson CM, Vendruscolo M, Mann M and Hartl FU

Widespread Proteome Remodeling and Aggregation in Aging C. elegans

Cell, 7. Mai, 2015, DOI: 10.1016/j.cell.2015.03.032

Prof. Dr. Franz-Ulrich Hartl | Max-Planck-Institut für Biochemie, Martinsried

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten