Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Präzise Selbstorganisation von Polymer-Bausteinen

29.02.2012
Chemiker der Universität Jena entwickelt mit internationalem Team Konzept für komplexe Nanostrukturen

Die Natur produziert eine Fülle komplexer und funktionaler Materialien, zum Beispiel Strukturproteine, aus denen unsere Haut, Haare und Bindegewebe bestehen oder Enzyme, die zur Katalyse biochemischer Reaktionen nötig sind.

„Trotz ihrer enormen Vielfalt bestehen diese Strukturen aus einer sehr überschaubaren Anzahl von Grundbausteinen – den Aminosäuren“, sagt Juniorprofessor Dr. Felix H. Schacher von der Friedrich-Schiller-Universität Jena. Der ausschlaggebende Faktor für die Funktionalität der verschiedenen Eiweißmoleküle ist vor allem ihre komplexe dreidimensionale Struktur. „Diese entsteht durch Selbstorganisation, etwa durch die schrittweise Faltung von Eiweißketten“, so der Juniorprofessor für Polymer-basierte Nanoobjekte weiter.

Dieses Prinzip der Selbstorganisation für die Herstellung komplexer nanostrukturierter Materialien nutzbar zu machen, das ist das Ziel eines internationalen Forscherteams, dem auch der Jenaer Nachwuchswissenschaftler angehört. Ihre aktuellen Forschungsergebnisse dazu haben die Wissenschaftler im renommierten Wissenschaftsmagazin „Nature Communications“ veröffentlicht (DOI: 10.1038/ncomms1707).

Bisher sei die Forschung noch weit von der Präzision und Einheitlichkeit entfernt, mit der die Natur komplexe Strukturen erschafft, so Schacher. Doch der Chemiker vom Institut für Organische Chemie und Makromolekulare Chemie (IOMC) sowie dem Jena Center for Soft Matter (JCSM) hat gemeinsam mit Kollegen aus Bayreuth, Aachen, St. Petersburg (Russland) und Pau (Frankreich) einen wichtigen Schritt in diese Richtung gemacht. Das Forscherteam hat ein Konzept entwickelt, nachdem sich hierarchisch aufgebaute Nanostrukturen aus wohldefinierten Makromolekülen präzise und gezielt selbst organisieren lassen.

Bei den eingesetzten Materialien, sogenannten Triblockterpolymeren, handelt es sich um kettenförmige Moleküle, die aus drei unterschiedlichen Bausteinen („Blöcken“) bestehen. „Wobei sich die drei Segmente hinsichtlich ihrer physikalischen Eigenschaften, insbesondere der Löslichkeit in verschiedenen Lösungsmitteln, fundamental unterscheiden können“, erläutert Chemiker Schacher. Diese Unterschiede machen sich die Forscher zunutze und stellen in der aktuellen Publikation ein Konzept vor, nach dem sich aus Triblockterpolymeren schrittweise definierte Aggregate (Mizellen) bilden, die sich weiter zu größeren Strukturen mit bis zu mehreren Mikrometern Länge organisieren.

„In Zukunft könnten solche Strukturen als Träger für Wirkstoffe oder multifunktionale Sensoren interessant werden“, erwartet Prof. Schacher. Zwar werde bereits seit mehreren Jahrzehnten an Mizellen auf Polymerbasis geforscht, das vorgestellte Konzept lässt sich jedoch erstmals auf ein breites Spektrum an synthetischen Bausteinen und verschiedenen Lösungsmitteln anwenden. „Wir können solche Strukturen damit erstmals wirklich maßschneidern“, betont der Chemiker.

Die vorliegende Publikation geht u. a. auf langjährige Erfahrung der Arbeitsgruppe von Prof. Dr. Axel H. E. Müller an der Uni Bayreuth zurück, in der Felix H. Schacher seine Promotionsarbeit im Jahre 2009 angefertigt hat. Nach einem zwischenzeitlichen Postdoc-Aufenthalt in England wechselte er im August 2010 an die Uni Jena.

Original-Publikation:
Gröschel, A. H., Schacher, F. H., Schmalz, H., Borisov, O. V., Zhulina, E. B., Walther, A., Müller, A. H. E.; Precise Hierarchical Self-Assembly of Multicompartment Micelles, Nature Communications 3:710 (2012), DOI: 10.1038/ncomms1707
Kontakt:
Jun.-Prof. Dr. Felix H. Schacher
Institut für Organische Chemie und Makromolekulare Chemie
Jena Center for Soft Matter (JCSM)
Friedrich-Schiller-Universität Jena
Lessingstraße 8, 07743 Jena
Tel.: 03641 / 948250
E-Mail: felix.schacher[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht «Schwangere» Stubenfliegenmännchen zeigen Evolution der Geschlechtsbestimmung
23.05.2017 | Universität Zürich

nachricht Goldene Hilfe gegen Hautkrankheiten
23.05.2017 | Hochschule Ostwestfalen-Lippe

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

WHZ erhält hochmodernen Prüfkomplex für Schraubenverbindungen

23.05.2017 | Maschinenbau

«Schwangere» Stubenfliegenmännchen zeigen Evolution der Geschlechtsbestimmung

23.05.2017 | Biowissenschaften Chemie

Tumult im trägen Elektronen-Dasein

23.05.2017 | Physik Astronomie