Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pharmakologie - Bremse für das Ebola-Virus

27.02.2015

Um in die Wirtszellen zu gelangen, spannt das tödliche Ebola-Virus die Zellmaschinerie ein – unter anderem bestimmte Calcium-Kanäle der Zellwand. Die lassen sich mit einem Wirkstoff blocken, was im Tiermodell die Infektion stoppt.

Erst kürzlich kamen auch gute Nachrichten aus den Staaten Westafrikas, in denen das tödliche Ebola-Virus wütet. In den drei am stärksten betroffenen Ländern ist die Zahl der Neuinfektionen gesunken, den jüngsten Ausbruch in Mali erklärt die Weltgesundheitsorganisation WHO offiziell für beendet. Doch die Hoffnung könnte trügerisch sein.

Schließlich hat ein Ausbruch noch nie so lange gedauert wie der jetzige, noch nie ein so großes Gebiet betroffen. Und noch immer verläuft in diesen Ländern die Mehrzahl der Infektionen tödlich. Ein zugelassenes Medikament gegen Ebola gibt es bislang nicht, nur eine Reihe von Wirkstoffkandidaten. Der Erreger löst ein schweres hämorrhagisches Fieber aus, am Ende stehen schwere innere Blutungen und schließlich ein Multiorganversagen.

Wie sich das Virus seinen Weg in den Körper bahnt und anschließend den Stoffwechsel der Wirtszellen ausnutzt, um neue Viruspartikel zu bauen, ist nicht in allen Teilen bekannt. Jetzt ist es einem deutsch-amerikanischen Forscherteam gelungen, dem Bild ein weiteres entscheidendes Detail hinzuzufügen – und damit gleichzeitig einen weiteren Ansatz für eine mögliche Therapie aufzuzeigen. Die Wissenschaftler um die Pharmakologie-Professoren Martin Biel und Christian Wahl von der LMU sowie den Virologen Dr. Robert Davey vom Texas Biomedical Research Institute in San Antonio, USA, berichten davon im renommierten Wissenschaftsblatt Science.

Die Erreger docken zunächst an bestimmte Rezeptoren an der Oberfläche vor allem von Makrophagen, Fresszellen des Immunsystems, an. Das löst eine Kette von Ereignissen aus: Die Zellen umschließen die Viren mit Ausstülpungen und fangen sie so in Vesikeln ein, die wiederum mit anderen Vesikeln, sogenannten Lysosomen, verschmelzen. Bei dieser Fusion spielen bestimmte Ionenkanäle in den Membranen der Vesikel, sogenannte Two Pore Channels (TPCs) , eine wichtige Rolle. Diese Kanäle, so fanden die Forscher jetzt heraus, sind für den Infektionszyklus der Viren unerlässlich. Sie liefern das für den Infektionsweg nötige Calcium-Ionen-Signal. Sind sie blockiert oder defekt, bleiben die Viren in den Vesikeln stecken und der Infektionszyklus wird wirkungsvoll unterbrochen.

Als besonders effektiv erwies sich der Wirkstoff Tetrandrin, ein pflanzliches Alkaloid, das seit Langem in der traditionellen fernöstlichen Medizin Verwendung findet. Tetrandrin verhindert die Infektion von Makrophagen mit Ebola-Viren und zeigt auch therapeutische Wirkung bei Mäusen, bei gleichzeitig vergleichsweise geringer Toxizität. Das konnten die US-Wissenschaftler in Infektionsversuchen in ihren Hochsicherheitslabors in San Antonio nachweisen.

Die Münchner, Spezialisten für Ionenkanäle, haben die Eigenschaften der TPCs und insbesondere die Interaktion dieser Kanäle mit Tetrandrin in den Vesikeln direkt analysiert. Von entscheidender Bedeutung für diese Untersuchungen waren von den Münchnern hergestellte genetische Mausmodelle, denen TPCs fehlen. Teile der Forschungsarbeiten fanden im Rahmen des Exzellenz-Clusters Center for integrated Protein Science Munich (CiPSM) und des Transregio-Sonderforschungsbereiches 152 „Steuerung der Körper-Homöostase durch TRP-Kanal-Module“ statt.

An den TPCs anzusetzen, um das Virus zu bekämpfen, könnte aus Martin Biels Sicht eine vielversprechende pharmakologische Strategie sein. „Wir töten nicht das Virus ab, sondern verhindern, dass es infektiös wird“, sagt der LMU-Forscher. „Wir greifen es also nicht direkt an, sondern gleichsam auf einem Umweg.“ Das verringere die Gefahr, dass die hohe Variabilität der Viren eine therapeutisch eingesetzte Substanz schnell unwirksam werden lasse. Die Münchner Wissenschaftler wollen den Wirkstoff pharmazeutisch-chemisch weiterentwickeln und in seiner Wirkung auf die Ionenkanäle noch besser anpassen. „Ich bin durchaus optimistisch“, sagt Biel. „Die Chancen, dass dabei ein aussichtsreicher Wirkstoff-Kandidat herauskommt, sind groß.“
Science 2015

Publikation:
Two pore channels control Ebolavirus host cell entry and are drug targets for disease treatment
Y. Sakurai, A. A. Kolokoltsov, C.-C. Chen, M. W. Tidwell, W. E. Bauta, N. Klugbauer, C. Grimm, C. Wahl-Schott, M. Biel, R. A. Davey
Science 2014
http://www.sciencemag.org/content/347/6225/995

Kontakt:
Prof. Dr. Martin Biel
Department Pharmazie
Zentrum für Pharmaforschung
Tel.: 0049 89 2180-77328
martin.biel@cup.uni-muenchen.de
http://www.cup.uni-muenchen.de/dept/ph/pharmakologie/biel.php

Prof. Dr. Christian Wahl
Department Pharmazie
Zentrum für Pharmaforschung
Tel.: 0049 89 2180-77654
christian.wahl@cup.uni-muenchen.de
http://www.cup.uni-muenchen.de/dept/ph/pharmakologie/wahl.php

Luise Dirscherl | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics