Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzenwurzel trifft auf eisernen Widerstand

21.04.2015

Anpassung an Phosphatmangel aufgeklärt

Phosphat gehört zu den wichtigsten Bestandteilen jeder Zelle. Es spielt eine zentrale Rolle im Energiestoffwechsel aller Lebewesen und sorgt für die Stabilität der Erbsubstanz. Pflanzen reagieren auf einen ungenügenden Phosphatgehalt im Boden mit einer grundlegenden Umgestaltung ihrer Wurzelarchitektur. Warum und wie sie das tun, war für Experten lange ein Rätsel.


Erfolg auf allen Ebenen: Die Publikation zum pflanzlichen Phosphatmangel wurde von Developmental Cell als Titelstory ausgewählt.

Wissenschaftlern des Hallenser Leibniz-Instituts für Pflanzenbiochemie (IPB) ist es jetzt gelungen, die molekularen Mechanismen dieser pflanzlichen Anpassungsreaktion auf­­zuklären. Mit ihrer Publikation, die als Titelstory in Developmental Cell erschien, sorgen sie für einen Erkenntnisgewinn, der angesichts drohender, weltweiter Verknappung der Phosphatlagerstätten, von großer Bedeutung ist.

Pflanzen sind auf eine hohe Verfügbarkeit von Phosphat im Boden angewiesen. Ist der lokal erreichbare Vorrat verbraucht, geraten sie in einen Mangelzustand, der mit Wachstumsstörungen und Ertragseinbußen einhergeht. Die Anpassung an diesen Mangel erfolgt unterirdisch:

Die Hauptwurzel verlangsamt ihr Wachstum in die Tiefe; stattdessen bildet sie vermehrt Seitenwurzeln mit unzähligen Wurzelhaaren aus. Durch dieses Wachstum in die Breite vergrößert die Wurzel ihr Einzugsgebiet in den oberen Bodenschichten und damit ihre Chancen, Phosphat aus verrottenden Pflanzenteilen und Mikroorganismen zu erschließen.

Interessanterweise hängt diese dramatische Umgestaltung des Wurzelsystems eng mit der Verfügbarkeit von Eisen zusammen. Im Experiment wiesen die Wissenschaftler um Dr. Jens Müller und Professor Steffen Abel nach, dass die Wurzelspitze unter Phosphatmangel vermehrt Eisen aufnimmt und dieses in der sogenannten Stammzellnische an­­reichert.

Die Stammzellnische ist ein aus wenigen Zellen bestehendes Areal, von dem alle Wachstumsprozesse in der Wur­zelspitze gesteuert werden. Ei­ne Anreicherung von Eisen in dieser sensiblen Steuerzentrale führt zu einer lokal begrenzten Verdickung der Zellwände in diesem Bereich. Durch die Zellwandverdickungen werden auch die Verbindungstunnel zwischen den Zellen verengt, sodass Wachstumsfaktoren und Signalstoffe nicht mehr von der Steuerzentrale in die Stammzellen wandern.

Bleibt das Wachstumssignal aus, stellen die Stammzellen ihre Teilung ein: Die Wurzelspitze wächst nicht mehr in die Tiefe. Stattdessen bilden sich Seitenwurzeln und Wurzelhärchen im oberen Wurzelstrang.

Eisen ist – im Gegensatz zum Phosphat – eher in den tieferen Bodenschichten anzutreffen. Bei unzureichender Phosphatzufuhr, nimmt die Wurzel zu viel Eisen auf und stoppt daraufhin ihr Tiefenwachstum, um in die Breite zu wachsen und die Phosphatquellen in den oberen Bodenschichten besser erschließen zu können. Auf diese Weise kann die Pflanze die Richtung ihres Wurzelwachstums beeinflussen und an die Verfügbarkeit dieser beiden Nährstoffe anpassen.

Phosphor wird als nicht erneuerbare Ressource auf der Welt immer knapper. Die kontinentalen Phosphatvorkommen reichen nach Meinung der Experten nur noch für wenige Jahrzehnte. 90 Prozent der jährlich weltweit geförderten 180 Millionen Tonnen Rohphosphate wird für die Produktion von Düngemitteln verwendet, ohne die ein ertragreicher Anbau von Kulturpflanzen nicht möglich wäre. Ein besseres Verständnis der pflanzlichen Nährstoffaufnahme könnte zur Entwicklung von neuen Sorten führen, die Phosphat besser erschließen. Das hätte auch eine Verringerung der Umweltbelastung durch Überdüngung zur Folge.

Originalpublikation:
Jens Müller, Theresa Toev, Marcus Heisters, Janine Teller, Katie L. Moore, Gerd Hause, Dhurvas Chandrasekaran Dinesh, Katharina Bürstenbinder & Steffen Abel, Iron-dependent Callose Deposition Adjusts Root Meristem Maintenance to Phosphate Availability, Developmental Cell 33: 216-230,
http://dx.doi.org/10.1016/j.devcel.2015.02.007

Ansprechpartner:
Professor Steffen Abel
Tel.: 0345 5582 1200
sabel@ipb-halle.de

Dr. Jens Müller
Tel.: 0345 5582 1220
jens.mueller@ipb-halle.de

Weitere Informationen:

http://www.ipb-halle.de/oeffentlichkeit/aktuelles/artikel-detail/pflanzenwurzel-...

Sylvia Pieplow | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie