Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzenwurzel trifft auf eisernen Widerstand

21.04.2015

Anpassung an Phosphatmangel aufgeklärt

Phosphat gehört zu den wichtigsten Bestandteilen jeder Zelle. Es spielt eine zentrale Rolle im Energiestoffwechsel aller Lebewesen und sorgt für die Stabilität der Erbsubstanz. Pflanzen reagieren auf einen ungenügenden Phosphatgehalt im Boden mit einer grundlegenden Umgestaltung ihrer Wurzelarchitektur. Warum und wie sie das tun, war für Experten lange ein Rätsel.


Erfolg auf allen Ebenen: Die Publikation zum pflanzlichen Phosphatmangel wurde von Developmental Cell als Titelstory ausgewählt.

Wissenschaftlern des Hallenser Leibniz-Instituts für Pflanzenbiochemie (IPB) ist es jetzt gelungen, die molekularen Mechanismen dieser pflanzlichen Anpassungsreaktion auf­­zuklären. Mit ihrer Publikation, die als Titelstory in Developmental Cell erschien, sorgen sie für einen Erkenntnisgewinn, der angesichts drohender, weltweiter Verknappung der Phosphatlagerstätten, von großer Bedeutung ist.

Pflanzen sind auf eine hohe Verfügbarkeit von Phosphat im Boden angewiesen. Ist der lokal erreichbare Vorrat verbraucht, geraten sie in einen Mangelzustand, der mit Wachstumsstörungen und Ertragseinbußen einhergeht. Die Anpassung an diesen Mangel erfolgt unterirdisch:

Die Hauptwurzel verlangsamt ihr Wachstum in die Tiefe; stattdessen bildet sie vermehrt Seitenwurzeln mit unzähligen Wurzelhaaren aus. Durch dieses Wachstum in die Breite vergrößert die Wurzel ihr Einzugsgebiet in den oberen Bodenschichten und damit ihre Chancen, Phosphat aus verrottenden Pflanzenteilen und Mikroorganismen zu erschließen.

Interessanterweise hängt diese dramatische Umgestaltung des Wurzelsystems eng mit der Verfügbarkeit von Eisen zusammen. Im Experiment wiesen die Wissenschaftler um Dr. Jens Müller und Professor Steffen Abel nach, dass die Wurzelspitze unter Phosphatmangel vermehrt Eisen aufnimmt und dieses in der sogenannten Stammzellnische an­­reichert.

Die Stammzellnische ist ein aus wenigen Zellen bestehendes Areal, von dem alle Wachstumsprozesse in der Wur­zelspitze gesteuert werden. Ei­ne Anreicherung von Eisen in dieser sensiblen Steuerzentrale führt zu einer lokal begrenzten Verdickung der Zellwände in diesem Bereich. Durch die Zellwandverdickungen werden auch die Verbindungstunnel zwischen den Zellen verengt, sodass Wachstumsfaktoren und Signalstoffe nicht mehr von der Steuerzentrale in die Stammzellen wandern.

Bleibt das Wachstumssignal aus, stellen die Stammzellen ihre Teilung ein: Die Wurzelspitze wächst nicht mehr in die Tiefe. Stattdessen bilden sich Seitenwurzeln und Wurzelhärchen im oberen Wurzelstrang.

Eisen ist – im Gegensatz zum Phosphat – eher in den tieferen Bodenschichten anzutreffen. Bei unzureichender Phosphatzufuhr, nimmt die Wurzel zu viel Eisen auf und stoppt daraufhin ihr Tiefenwachstum, um in die Breite zu wachsen und die Phosphatquellen in den oberen Bodenschichten besser erschließen zu können. Auf diese Weise kann die Pflanze die Richtung ihres Wurzelwachstums beeinflussen und an die Verfügbarkeit dieser beiden Nährstoffe anpassen.

Phosphor wird als nicht erneuerbare Ressource auf der Welt immer knapper. Die kontinentalen Phosphatvorkommen reichen nach Meinung der Experten nur noch für wenige Jahrzehnte. 90 Prozent der jährlich weltweit geförderten 180 Millionen Tonnen Rohphosphate wird für die Produktion von Düngemitteln verwendet, ohne die ein ertragreicher Anbau von Kulturpflanzen nicht möglich wäre. Ein besseres Verständnis der pflanzlichen Nährstoffaufnahme könnte zur Entwicklung von neuen Sorten führen, die Phosphat besser erschließen. Das hätte auch eine Verringerung der Umweltbelastung durch Überdüngung zur Folge.

Originalpublikation:
Jens Müller, Theresa Toev, Marcus Heisters, Janine Teller, Katie L. Moore, Gerd Hause, Dhurvas Chandrasekaran Dinesh, Katharina Bürstenbinder & Steffen Abel, Iron-dependent Callose Deposition Adjusts Root Meristem Maintenance to Phosphate Availability, Developmental Cell 33: 216-230,
http://dx.doi.org/10.1016/j.devcel.2015.02.007

Ansprechpartner:
Professor Steffen Abel
Tel.: 0345 5582 1200
sabel@ipb-halle.de

Dr. Jens Müller
Tel.: 0345 5582 1220
jens.mueller@ipb-halle.de

Weitere Informationen:

http://www.ipb-halle.de/oeffentlichkeit/aktuelles/artikel-detail/pflanzenwurzel-...

Sylvia Pieplow | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie