Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der perfekte Schleim

02.11.2010
Das Erfolgsgeheimnis der meisten Bakterien ist, dass sie mit anderen Mikroorganismen zusammen in einer Schleimhülle leben.

Die Mikrobiologen und Wasserforscher Prof. Dr. Hans-Curt Flemming und Dr. Jost Wingender von der Universität Duisburg-Essen (UDE) zeigen auf, was die Natur für eine komplexe und gleichzeitig geniale Matrix geschaffen hat.

Nur die wenigsten Bakterien auf der Welt kommen als winzige Einzelzellen in Wasser vor – die allermeisten führen ein Gemeinschaftsleben mit allen möglichen anderen Mikroorganismen in einer unansehnlichen Schleimhülle. Die aber birgt ihr Erfolgsgeheimnis.

Die Mikrobiologen und Wasserforscher Prof. Dr. Hans-Curt Flemming und Dr. Jost Wingender von der Universität Duisburg-Essen (UDE) haben in einer jetzt publizierten Arbeit in „Nature Reviews Microbiology“ gezeigt, was die Natur da für eine komplexe und gleichzeitig geniale Matrix geschaffen hat.

Sie ist eine der Ursachen dafür, dass so genannte Biofilme entstehen können: die älteste Form des Lebens auf der Erde. Zugleich ist sie die am weitesten verbreitete und die erfolgreichste – es gibt davon Milliarden von Tonnen.

Ihre Bausteine bestehen aus verschiedenen Biopolymeren, wie Proteine, Polysaccharide und Nucleinsäuren. Sie binden viel Wasser und bilden eine Matrix. In ihr können die verschiedenen Biofilm-Bewohner über längere Zeit hinweg in stabilen Anordnungen bleiben, „Mikrokonsortien“ genannt, in denen sie auch komplizierte Verbindungen abbauen können.

Sie scheiden Enzyme aus, die in der Matrix hängen bleiben, so dass auch ihre Produkte in der Nähe bleiben und gut verwertet werden – auf diese Weise bilden sie gewissermaßen ein externes Verdauungssystem, das biologisch Verwertbares auf „mundgerechte Größe“ zerkleinert.

Baumfressende Biofilme

Damit können sie alles abbauen, was biologisch abbaubar ist – so können Biofilme sogar Bäume fressen. Flemming: „Sie brauchen zwar lange dafür, aber sie siedeln sich darauf an und zersetzen sie.“ In der Matrix reichern sie nicht nur die gelösten Stoffe an, sondern auch die Partikel aus dem Abwasser. In Müllhalden vollbringen sie so auch die biologische Abfallbeseitigung.

Sie sind die globale Putzkolonne, Träger der Selbstreinigungskräfte im Boden, in Gewässern und technisch in allen Biofiltern genutzt. Gleichzeitig ist die Matrix ein perfektes Recycling-System, das auch abgestorbene Zellen nahezu vollständig wiederverwertet. Wenn Biofilme trockenfallen, hält die Matrix das Wasser zurück, das ihre Bewohner zum Leben brauchen. Bei Bedarf können sie diese Matrix auch umbauen und letzten Endes sogar als Nährstoff verwenden.

Allerdings gibt es keinen Bakterienstamm, der sämtliche Matrix-Bestandteile abbauen kann – so etwas wäre eine Naturkatastrophe, von der die gesamte Selbstreinigung des Planeten betroffen wäre. Aber das ist nicht zu befürchten. Im Laufe der Evolution haben sich so viele verschiedene Varianten dieser Bestandteile entwickelt, dass Enzyme nur Löcher in den Biofilm fressen, ihn aber nicht vollständig beseitigen.

Die Matrix ist sozusagen das „Haus für Biofilm-Bewohner“, ihre unmittelbare Umgebung. Sie gibt ihnen Halt, hilft ihnen bei der Ernährung und erlaubt ihnen, auch unter ungünstigsten Bedingungen am Leben zu bleiben. Flemming: „Es ist schon faszinierend, welche perfekte Funktion hinter so einem unansehnlichen Stück Natur steckt.“

Weitere Informationen:
Prof. Dr. Hans-Curt Flemming, Biofilm Centre, Tel. 0201/183-6601, 0172/90 66 119, 0208/40 30 34 01, hc.flemming@uni-due.de

Beate Kostka | idw
Weitere Informationen:
http://www.uni-due.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics