Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Partnerschaften im Gehirn

09.03.2012
Mathematisches Modell beschreibt die Zusammenarbeit von Nervenzellen

Wie kommunizieren Nervenzellen im Gehirn miteinander? Eine gängige Theorie besagt, dass nicht einzelne Zellen Signale untereinander austauschen. Stattdessen findet dieser Austausch zwischen Zellverbünden statt.

Forscher aus Japan, den USA und Deutschland haben nun ein mathematisches Modell entwickelt, mit dem sich diese Annahme überprüfen lässt. Die Ergebnisse ihrer Arbeit präsentieren sie in der aktuellen Ausgabe der Fachzeitschrift "PLoS Computational Biology".

Eine Nervenzelle im Neokortex - dem Teil des Gehirns, der für höhere Hirnfunktionen zuständig ist - nimmt Kontakt zu Tausenden anderen Neuronen auf und empfängt von ihnen auch eine Vielzahl von Signalen. Wie die Neuronen dadurch zusammenarbeiten, lässt sich aus gemessenen Signalen bisher nur schwer interpretieren. Forscher des RIKEN Brain Science Institute (BSI) in Japan haben nun zusammen mit Wissenschaftlern des Forschungszentrums Jülich

(Deutschland) und des Massachusetts Institute of Technology in Boston (USA) ein mathematisches Modell entwickelt, das in dieser Hinsicht Klarheit schaffen könnte.

"Aus den vielen gleichzeitig gemessenen Signalen filtert das neue Verfahren Informationen, ob die Neuronen einzeln kommunizieren oder als Verbund", so Dr. Hideaki Shimazaki vom BSI. "Darüber hinaus berücksichtigt das Modell, dass diese Zellverbünde keine festen Gruppierungen sein müssen, sondern sich innerhalb von Millisekunden flexibel umgruppieren können - abhängig von den aktuellen Anforderungen im Gehirn."

Prof. Sonja Grün vom Forschungszentrum Jülich hofft, dass es den Forschern mit diesem Verfahren gelingt, die Existenz dynamischer Zellverbände nachzuweisen und deren Aktivität eindeutig bestimmten Verhaltensweisen zuzuordnen. Die Wissenschaftler konnten bereits zeigen, dass Nervenzellen zusammenfinden, wenn Tiere ein Signal erwarten. Die Tiere können dadurch schneller beziehungsweise empfindlicher reagieren.

In der Zukunft wollen die Forscher lernen, ihre Methoden auf gleichzeitig aufgezeichnete Signale von Hunderten von Neuronen anzuwenden. Dadurch wäre die Wahrscheinlichkeit größer, Zellverbünde zu beobachten, die an der Planung und Steuerung von Verhalten beteiligt sind.

Originalveröffentlichung:

Shimazaki H., Amari S-i., Brown E. N., Grün S. (2012) State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data. PLoS Comput Biol 8(3): e1002385.
doi:10.1371/journal.pcbi.1002385
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002385
Weitere Informationen:
Informationen zum RIKEN Brain Science Institute in Japan:
http://www.brain.riken.jp/en/
Informationen zum Forschungszentrum Jülich:
http://www.fz-juelich.de/portal/DE/Home/home_node.html
Institut für Neurowissenschaften und Medizin, Computational and Systems Neuroscience (INM-6):

http://www.csn.fz-juelich.de

Ansprechpartner:

Dr. Hideaki Shimazaki
RIKEN Brain Science Institute
Tel: +81 48 467-9644
E-Mail: shimazaki@brain.riken.jp
http://2000.jukuin.keio.ac.jp/shimazaki/
Prof. Dr. Sonja Grün
Institut für Neurowissenschaften und Medizin, Computational and Systems Neuroscience (INM-6)
Tel: +49 2461 61-9302
E-Mail: s.gruen@fz-juelich.de
Pressekontakt:
Brain Science Promotion Division
RIKEN Brain Science Institute
Tel: +81 48 467-9757
E-Mail: pr@brain.riken.jp
Erhard Zeiss, Dr. Barbara Schunk
Tel: +49 2461 61-1841 oder -8031
E-Mail: e.zeiss@fz-juelich.de, b.schunk@fz-juelich.de
Über das RIKEN Brain Science Institute
Mit der Gründung des RIKEN Brain Science Institute (BSI) im Oktober 1997 wurde dem wachsenden gesellschaftlichen Bedarf nach Hirnforschung auf Spitzenniveau Rechnung getragen. Das BSI ist seitdem ein Anziehungspunkt für vielversprechende Wissenschaftler aus Japan und dem Ausland und hat verschiedene wissenschaftliche und personelle Ressourcen zusammengebracht.

Es genießt heute weltweit einen ausgezeichneten Ruf als innovatives Hirnforschungszentrum.

Die Forschung am BSI umfasst ein breites Spektrum wissenschaftlicher Disziplinen, darunter Medizin, Biologie, Physik, Ingenieurwissenschaften, Informationswissenschaften, Mathematik und Psychologie. Zu den Forschungsthemen des Instituts gehören einzelne Organismen, Verhalten, mikroskopische Molekülstrukturen im Gehirn, Neuronen, neuronale Schaltkreise, Kognition, Gedächtnis, Lernen, Spracherwerb und Robotik.

Das Forschungszentrum Jülich...
betreibt interdisziplinäre Spitzenforschung, stellt sich drängenden Fragen der Gegenwart und entwickelt gleichzeitig Schlüsseltechnologien für morgen.

Hierbei konzentriert sich die Forschung auf die Bereiche Gesundheit, Energie und Umwelt sowie Informationstechnologie. Einzigartige Expertise und Infrastruktur in der Physik, den Materialwissenschaften, der Nanotechnologie und im Supercomputing prägen die Zusammenarbeit der Forscherinnen und Forscher. Mit rund 4 700 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den großen Forschungszentren Europas.

Erhard Zeiss | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops