Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Partnerschaften im Gehirn

09.03.2012
Mathematisches Modell beschreibt die Zusammenarbeit von Nervenzellen

Wie kommunizieren Nervenzellen im Gehirn miteinander? Eine gängige Theorie besagt, dass nicht einzelne Zellen Signale untereinander austauschen. Stattdessen findet dieser Austausch zwischen Zellverbünden statt.

Forscher aus Japan, den USA und Deutschland haben nun ein mathematisches Modell entwickelt, mit dem sich diese Annahme überprüfen lässt. Die Ergebnisse ihrer Arbeit präsentieren sie in der aktuellen Ausgabe der Fachzeitschrift "PLoS Computational Biology".

Eine Nervenzelle im Neokortex - dem Teil des Gehirns, der für höhere Hirnfunktionen zuständig ist - nimmt Kontakt zu Tausenden anderen Neuronen auf und empfängt von ihnen auch eine Vielzahl von Signalen. Wie die Neuronen dadurch zusammenarbeiten, lässt sich aus gemessenen Signalen bisher nur schwer interpretieren. Forscher des RIKEN Brain Science Institute (BSI) in Japan haben nun zusammen mit Wissenschaftlern des Forschungszentrums Jülich

(Deutschland) und des Massachusetts Institute of Technology in Boston (USA) ein mathematisches Modell entwickelt, das in dieser Hinsicht Klarheit schaffen könnte.

"Aus den vielen gleichzeitig gemessenen Signalen filtert das neue Verfahren Informationen, ob die Neuronen einzeln kommunizieren oder als Verbund", so Dr. Hideaki Shimazaki vom BSI. "Darüber hinaus berücksichtigt das Modell, dass diese Zellverbünde keine festen Gruppierungen sein müssen, sondern sich innerhalb von Millisekunden flexibel umgruppieren können - abhängig von den aktuellen Anforderungen im Gehirn."

Prof. Sonja Grün vom Forschungszentrum Jülich hofft, dass es den Forschern mit diesem Verfahren gelingt, die Existenz dynamischer Zellverbände nachzuweisen und deren Aktivität eindeutig bestimmten Verhaltensweisen zuzuordnen. Die Wissenschaftler konnten bereits zeigen, dass Nervenzellen zusammenfinden, wenn Tiere ein Signal erwarten. Die Tiere können dadurch schneller beziehungsweise empfindlicher reagieren.

In der Zukunft wollen die Forscher lernen, ihre Methoden auf gleichzeitig aufgezeichnete Signale von Hunderten von Neuronen anzuwenden. Dadurch wäre die Wahrscheinlichkeit größer, Zellverbünde zu beobachten, die an der Planung und Steuerung von Verhalten beteiligt sind.

Originalveröffentlichung:

Shimazaki H., Amari S-i., Brown E. N., Grün S. (2012) State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data. PLoS Comput Biol 8(3): e1002385.
doi:10.1371/journal.pcbi.1002385
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002385
Weitere Informationen:
Informationen zum RIKEN Brain Science Institute in Japan:
http://www.brain.riken.jp/en/
Informationen zum Forschungszentrum Jülich:
http://www.fz-juelich.de/portal/DE/Home/home_node.html
Institut für Neurowissenschaften und Medizin, Computational and Systems Neuroscience (INM-6):

http://www.csn.fz-juelich.de

Ansprechpartner:

Dr. Hideaki Shimazaki
RIKEN Brain Science Institute
Tel: +81 48 467-9644
E-Mail: shimazaki@brain.riken.jp
http://2000.jukuin.keio.ac.jp/shimazaki/
Prof. Dr. Sonja Grün
Institut für Neurowissenschaften und Medizin, Computational and Systems Neuroscience (INM-6)
Tel: +49 2461 61-9302
E-Mail: s.gruen@fz-juelich.de
Pressekontakt:
Brain Science Promotion Division
RIKEN Brain Science Institute
Tel: +81 48 467-9757
E-Mail: pr@brain.riken.jp
Erhard Zeiss, Dr. Barbara Schunk
Tel: +49 2461 61-1841 oder -8031
E-Mail: e.zeiss@fz-juelich.de, b.schunk@fz-juelich.de
Über das RIKEN Brain Science Institute
Mit der Gründung des RIKEN Brain Science Institute (BSI) im Oktober 1997 wurde dem wachsenden gesellschaftlichen Bedarf nach Hirnforschung auf Spitzenniveau Rechnung getragen. Das BSI ist seitdem ein Anziehungspunkt für vielversprechende Wissenschaftler aus Japan und dem Ausland und hat verschiedene wissenschaftliche und personelle Ressourcen zusammengebracht.

Es genießt heute weltweit einen ausgezeichneten Ruf als innovatives Hirnforschungszentrum.

Die Forschung am BSI umfasst ein breites Spektrum wissenschaftlicher Disziplinen, darunter Medizin, Biologie, Physik, Ingenieurwissenschaften, Informationswissenschaften, Mathematik und Psychologie. Zu den Forschungsthemen des Instituts gehören einzelne Organismen, Verhalten, mikroskopische Molekülstrukturen im Gehirn, Neuronen, neuronale Schaltkreise, Kognition, Gedächtnis, Lernen, Spracherwerb und Robotik.

Das Forschungszentrum Jülich...
betreibt interdisziplinäre Spitzenforschung, stellt sich drängenden Fragen der Gegenwart und entwickelt gleichzeitig Schlüsseltechnologien für morgen.

Hierbei konzentriert sich die Forschung auf die Bereiche Gesundheit, Energie und Umwelt sowie Informationstechnologie. Einzigartige Expertise und Infrastruktur in der Physik, den Materialwissenschaften, der Nanotechnologie und im Supercomputing prägen die Zusammenarbeit der Forscherinnen und Forscher. Mit rund 4 700 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den großen Forschungszentren Europas.

Erhard Zeiss | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten