Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Partnerschaften im Gehirn

09.03.2012
Mathematisches Modell beschreibt die Zusammenarbeit von Nervenzellen

Wie kommunizieren Nervenzellen im Gehirn miteinander? Eine gängige Theorie besagt, dass nicht einzelne Zellen Signale untereinander austauschen. Stattdessen findet dieser Austausch zwischen Zellverbünden statt.

Forscher aus Japan, den USA und Deutschland haben nun ein mathematisches Modell entwickelt, mit dem sich diese Annahme überprüfen lässt. Die Ergebnisse ihrer Arbeit präsentieren sie in der aktuellen Ausgabe der Fachzeitschrift "PLoS Computational Biology".

Eine Nervenzelle im Neokortex - dem Teil des Gehirns, der für höhere Hirnfunktionen zuständig ist - nimmt Kontakt zu Tausenden anderen Neuronen auf und empfängt von ihnen auch eine Vielzahl von Signalen. Wie die Neuronen dadurch zusammenarbeiten, lässt sich aus gemessenen Signalen bisher nur schwer interpretieren. Forscher des RIKEN Brain Science Institute (BSI) in Japan haben nun zusammen mit Wissenschaftlern des Forschungszentrums Jülich

(Deutschland) und des Massachusetts Institute of Technology in Boston (USA) ein mathematisches Modell entwickelt, das in dieser Hinsicht Klarheit schaffen könnte.

"Aus den vielen gleichzeitig gemessenen Signalen filtert das neue Verfahren Informationen, ob die Neuronen einzeln kommunizieren oder als Verbund", so Dr. Hideaki Shimazaki vom BSI. "Darüber hinaus berücksichtigt das Modell, dass diese Zellverbünde keine festen Gruppierungen sein müssen, sondern sich innerhalb von Millisekunden flexibel umgruppieren können - abhängig von den aktuellen Anforderungen im Gehirn."

Prof. Sonja Grün vom Forschungszentrum Jülich hofft, dass es den Forschern mit diesem Verfahren gelingt, die Existenz dynamischer Zellverbände nachzuweisen und deren Aktivität eindeutig bestimmten Verhaltensweisen zuzuordnen. Die Wissenschaftler konnten bereits zeigen, dass Nervenzellen zusammenfinden, wenn Tiere ein Signal erwarten. Die Tiere können dadurch schneller beziehungsweise empfindlicher reagieren.

In der Zukunft wollen die Forscher lernen, ihre Methoden auf gleichzeitig aufgezeichnete Signale von Hunderten von Neuronen anzuwenden. Dadurch wäre die Wahrscheinlichkeit größer, Zellverbünde zu beobachten, die an der Planung und Steuerung von Verhalten beteiligt sind.

Originalveröffentlichung:

Shimazaki H., Amari S-i., Brown E. N., Grün S. (2012) State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data. PLoS Comput Biol 8(3): e1002385.
doi:10.1371/journal.pcbi.1002385
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002385
Weitere Informationen:
Informationen zum RIKEN Brain Science Institute in Japan:
http://www.brain.riken.jp/en/
Informationen zum Forschungszentrum Jülich:
http://www.fz-juelich.de/portal/DE/Home/home_node.html
Institut für Neurowissenschaften und Medizin, Computational and Systems Neuroscience (INM-6):

http://www.csn.fz-juelich.de

Ansprechpartner:

Dr. Hideaki Shimazaki
RIKEN Brain Science Institute
Tel: +81 48 467-9644
E-Mail: shimazaki@brain.riken.jp
http://2000.jukuin.keio.ac.jp/shimazaki/
Prof. Dr. Sonja Grün
Institut für Neurowissenschaften und Medizin, Computational and Systems Neuroscience (INM-6)
Tel: +49 2461 61-9302
E-Mail: s.gruen@fz-juelich.de
Pressekontakt:
Brain Science Promotion Division
RIKEN Brain Science Institute
Tel: +81 48 467-9757
E-Mail: pr@brain.riken.jp
Erhard Zeiss, Dr. Barbara Schunk
Tel: +49 2461 61-1841 oder -8031
E-Mail: e.zeiss@fz-juelich.de, b.schunk@fz-juelich.de
Über das RIKEN Brain Science Institute
Mit der Gründung des RIKEN Brain Science Institute (BSI) im Oktober 1997 wurde dem wachsenden gesellschaftlichen Bedarf nach Hirnforschung auf Spitzenniveau Rechnung getragen. Das BSI ist seitdem ein Anziehungspunkt für vielversprechende Wissenschaftler aus Japan und dem Ausland und hat verschiedene wissenschaftliche und personelle Ressourcen zusammengebracht.

Es genießt heute weltweit einen ausgezeichneten Ruf als innovatives Hirnforschungszentrum.

Die Forschung am BSI umfasst ein breites Spektrum wissenschaftlicher Disziplinen, darunter Medizin, Biologie, Physik, Ingenieurwissenschaften, Informationswissenschaften, Mathematik und Psychologie. Zu den Forschungsthemen des Instituts gehören einzelne Organismen, Verhalten, mikroskopische Molekülstrukturen im Gehirn, Neuronen, neuronale Schaltkreise, Kognition, Gedächtnis, Lernen, Spracherwerb und Robotik.

Das Forschungszentrum Jülich...
betreibt interdisziplinäre Spitzenforschung, stellt sich drängenden Fragen der Gegenwart und entwickelt gleichzeitig Schlüsseltechnologien für morgen.

Hierbei konzentriert sich die Forschung auf die Bereiche Gesundheit, Energie und Umwelt sowie Informationstechnologie. Einzigartige Expertise und Infrastruktur in der Physik, den Materialwissenschaften, der Nanotechnologie und im Supercomputing prägen die Zusammenarbeit der Forscherinnen und Forscher. Mit rund 4 700 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den großen Forschungszentren Europas.

Erhard Zeiss | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften