Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Partnerschaften im Gehirn

09.03.2012
Mathematisches Modell beschreibt die Zusammenarbeit von Nervenzellen

Wie kommunizieren Nervenzellen im Gehirn miteinander? Eine gängige Theorie besagt, dass nicht einzelne Zellen Signale untereinander austauschen. Stattdessen findet dieser Austausch zwischen Zellverbünden statt.

Forscher aus Japan, den USA und Deutschland haben nun ein mathematisches Modell entwickelt, mit dem sich diese Annahme überprüfen lässt. Die Ergebnisse ihrer Arbeit präsentieren sie in der aktuellen Ausgabe der Fachzeitschrift "PLoS Computational Biology".

Eine Nervenzelle im Neokortex - dem Teil des Gehirns, der für höhere Hirnfunktionen zuständig ist - nimmt Kontakt zu Tausenden anderen Neuronen auf und empfängt von ihnen auch eine Vielzahl von Signalen. Wie die Neuronen dadurch zusammenarbeiten, lässt sich aus gemessenen Signalen bisher nur schwer interpretieren. Forscher des RIKEN Brain Science Institute (BSI) in Japan haben nun zusammen mit Wissenschaftlern des Forschungszentrums Jülich

(Deutschland) und des Massachusetts Institute of Technology in Boston (USA) ein mathematisches Modell entwickelt, das in dieser Hinsicht Klarheit schaffen könnte.

"Aus den vielen gleichzeitig gemessenen Signalen filtert das neue Verfahren Informationen, ob die Neuronen einzeln kommunizieren oder als Verbund", so Dr. Hideaki Shimazaki vom BSI. "Darüber hinaus berücksichtigt das Modell, dass diese Zellverbünde keine festen Gruppierungen sein müssen, sondern sich innerhalb von Millisekunden flexibel umgruppieren können - abhängig von den aktuellen Anforderungen im Gehirn."

Prof. Sonja Grün vom Forschungszentrum Jülich hofft, dass es den Forschern mit diesem Verfahren gelingt, die Existenz dynamischer Zellverbände nachzuweisen und deren Aktivität eindeutig bestimmten Verhaltensweisen zuzuordnen. Die Wissenschaftler konnten bereits zeigen, dass Nervenzellen zusammenfinden, wenn Tiere ein Signal erwarten. Die Tiere können dadurch schneller beziehungsweise empfindlicher reagieren.

In der Zukunft wollen die Forscher lernen, ihre Methoden auf gleichzeitig aufgezeichnete Signale von Hunderten von Neuronen anzuwenden. Dadurch wäre die Wahrscheinlichkeit größer, Zellverbünde zu beobachten, die an der Planung und Steuerung von Verhalten beteiligt sind.

Originalveröffentlichung:

Shimazaki H., Amari S-i., Brown E. N., Grün S. (2012) State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data. PLoS Comput Biol 8(3): e1002385.
doi:10.1371/journal.pcbi.1002385
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002385
Weitere Informationen:
Informationen zum RIKEN Brain Science Institute in Japan:
http://www.brain.riken.jp/en/
Informationen zum Forschungszentrum Jülich:
http://www.fz-juelich.de/portal/DE/Home/home_node.html
Institut für Neurowissenschaften und Medizin, Computational and Systems Neuroscience (INM-6):

http://www.csn.fz-juelich.de

Ansprechpartner:

Dr. Hideaki Shimazaki
RIKEN Brain Science Institute
Tel: +81 48 467-9644
E-Mail: shimazaki@brain.riken.jp
http://2000.jukuin.keio.ac.jp/shimazaki/
Prof. Dr. Sonja Grün
Institut für Neurowissenschaften und Medizin, Computational and Systems Neuroscience (INM-6)
Tel: +49 2461 61-9302
E-Mail: s.gruen@fz-juelich.de
Pressekontakt:
Brain Science Promotion Division
RIKEN Brain Science Institute
Tel: +81 48 467-9757
E-Mail: pr@brain.riken.jp
Erhard Zeiss, Dr. Barbara Schunk
Tel: +49 2461 61-1841 oder -8031
E-Mail: e.zeiss@fz-juelich.de, b.schunk@fz-juelich.de
Über das RIKEN Brain Science Institute
Mit der Gründung des RIKEN Brain Science Institute (BSI) im Oktober 1997 wurde dem wachsenden gesellschaftlichen Bedarf nach Hirnforschung auf Spitzenniveau Rechnung getragen. Das BSI ist seitdem ein Anziehungspunkt für vielversprechende Wissenschaftler aus Japan und dem Ausland und hat verschiedene wissenschaftliche und personelle Ressourcen zusammengebracht.

Es genießt heute weltweit einen ausgezeichneten Ruf als innovatives Hirnforschungszentrum.

Die Forschung am BSI umfasst ein breites Spektrum wissenschaftlicher Disziplinen, darunter Medizin, Biologie, Physik, Ingenieurwissenschaften, Informationswissenschaften, Mathematik und Psychologie. Zu den Forschungsthemen des Instituts gehören einzelne Organismen, Verhalten, mikroskopische Molekülstrukturen im Gehirn, Neuronen, neuronale Schaltkreise, Kognition, Gedächtnis, Lernen, Spracherwerb und Robotik.

Das Forschungszentrum Jülich...
betreibt interdisziplinäre Spitzenforschung, stellt sich drängenden Fragen der Gegenwart und entwickelt gleichzeitig Schlüsseltechnologien für morgen.

Hierbei konzentriert sich die Forschung auf die Bereiche Gesundheit, Energie und Umwelt sowie Informationstechnologie. Einzigartige Expertise und Infrastruktur in der Physik, den Materialwissenschaften, der Nanotechnologie und im Supercomputing prägen die Zusammenarbeit der Forscherinnen und Forscher. Mit rund 4 700 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den großen Forschungszentren Europas.

Erhard Zeiss | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dinner in the Dark – ein delikates Wechselspiel der Mikroorganismen
24.11.2017 | Universität Wien

nachricht Wenn Blutsauger die Nase voll haben
24.11.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intel und Universität Luxemburg kooperieren, um selbstfahrende Autos sicherer zu machen

24.11.2017 | Informationstechnologie

Wenn Blutsauger die Nase voll haben

24.11.2017 | Biowissenschaften Chemie

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungsnachrichten