Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Partikel: Hot Spots mikrobieller Aktivitäten in der Tiefsee

20.04.2010
Meeresbiologe der Universität Wien publiziert dazu in PNAS

Die Tiefenwasser der Ozeane sind uns als Lebensraum von spektakulär geformten, seltsam anmutenden Tieren bekannt. Neben diesen bizarren, vielfach noch unbekannten Lebewesen, gibt es zahllose Mikroorganismen, die mengenmäßig ein Vielfaches an Biomasse der Tiere ausmachen.

Gerhard Herndl, Leiter des Departments für Meeresbiologie der Universität Wien, erforscht die Nahrungsquellen dieser Tiefsee-Mikroorganismen und publiziert dazu zusammen mit Wissenschaftern aus den USA und Holland in der renommierten Fachzeitschrift PNAS.

Die Lebewesen im kalten Tiefenwasser sind nahrungstechnisch von organischem Material, das in den sonnendurchfluteten obersten 150 m des Meerwassers produziert wird und als eine Art Regen nach unten sinkt, abhängig. Jedoch gelangt nur 30 Prozent des in den Oberflächenschichten der Ozeane durch die Photosynthese gebildeten organischen Materials in Wassertiefen unterhalb von 150 m Tiefe. Die Mikroorganismen besiedeln diese in die Tiefe sinkenden Partikel und lösen sie teilweise auf, um die gelösten Substanzen aufzunehmen und daraus neue Mikroorganismen zu bilden. Die Aktivität dieser Tiefsee-Mikroorganismen bewirkt, dass aus organischem Material anorganische Nährstoffe gebildet werden, die dann wieder vom pflanzlichen Plankton verwendet werden, sobald das Tiefenwasser wieder an die Oberfläche gelangt - wie an den Westseiten der Kontinente.

Im Tiefenwasser herrscht unvorstellbar hoher Bedarf an organischem Material

Der Bedarf an organischem Material, das die heterotrophen Organismen des Tiefwassers benötigen, ist um ein Vielfaches höher, als die Menge von Partikeln, die es von der sonnendurchfluteten oberen Wasserschicht in die Tiefsee regnet und mit Sedimentfallen aufgefangen und quantifiziert werden kann. In der Tiefsee gibt es offenbar Schichten mit fragilen Partikeln, die von den herkömmlich verwendeten Sedimentfallen nicht erfasst werden, da diese nicht oder nur kaum sinken. Sie schweben in der jeweiligen Schicht und interessant ist, dass dort die Sauerstoffkonzentration geringer ist als im Wasser darüber und darunter. Gerhard Herndl erklärt dies so: "Dies bedeutet, dass die mikrobielle Aktivität an diesen Partikeln für die geringere Sauerstoffkonzentration im Umgebungswasser verantwortlich ist. Somit muss unsere generelle Sichtweise des Tiefenwassers, als Wasserkörper wo Mikroorganismen gleichmäßig und zufällig verteilt sind und in einem nährstoffarmen Milieu leben, revidiert werden. An diesen Partikeln ist die Konzentration an organischen Verbindungen um ein Vielfaches höher als im Umgebungswasser, d.h. es handelt sich dabei um potentielle Nahrungsquellen für heterotrophe Organismen. Diese schwebenden Partikel sind Hot Spots mikrobieller Aktivitäten in der Tiefsee."

Die zu lösende Frage, basierend auf den vorliegenden Ergebnissen, ist, wer diese in der Tiefsee schwebenden Partikel produziert. Werden sie vom pflanzlichen Plankton des Oberflächenwassers gebildet oder im Tiefwasser selbst produziert? Daran forscht Gerhard Herndl nun weiter und setzt für spezielle Analysen, u.a. den im Februar 2010 an der Universität Wien in Betrieb genommenen Nano-Sekundärionen-Massenspektrometer (NanoSIMS) ein.

Expedition im Atlantik, um Herkunft des organischen Materials zu klären

Die mikrobielle Aktivität im Tiefenwasser ist also viel höher als bisher angenommen. Gerhard Herndl leitet zur Erforschung der Lebensformen von Tiefwasser-Mikroorganismen auch ein ESF-Projekt (European Science Foundation), an dem sich auch die Gruppe um Christa Schleper, Leiterin des Departments für Ökogenetik der Universität Wien, sowie Forschungsteams aus Schweden, Deutschland und Spanien beteiligen. Bei der für Oktober 2010 geplanten Forschungsfahrt im Atlantik werden spezielle Probennahme-Systeme zum Einsatz kommen. Damit werden jene Partikel, die bisher nicht gesammelt werden konnten, selektiv aus dem Meerwasser entnommen und analysiert. Der Meeresbiologe hofft, das Rätsel über die Lücke zwischen dem Angebot und dem Bedarf an organischem Material der Tiefseeorganismen zu lösen und meint abschließend: "Diese Diskrepanz im Kohlenstoffbudget der Ozeane deutet darauf hin, dass wichtige Prozesse noch nicht erfasst sind."

Publikation
Role of macroscopic particles in deep-sea oxygen consumption: Alexander B. Bochdansky (Old Dominion University), Hendrik M. van Aken, Gerhard J. Herndl (Royal Netherlands Institute for Sea Research), Gerhard J. Herndl (University of Vienna).

Erscheint in der Woche vom 19. bis 23. April 2010: www.pnas.org

Kontakt
Univ.-Prof. Dr. Gerhard Herndl
Department für Meeresbiologie
Universität Wien
1090 Wien, Althanstraße 14 (UZA I)
T +43-1-4277-571 00
M +43-699-190 811 66
gerhard.herndl@univie.ac.at
Rückfragehinweis
Mag. Veronika Schallhart
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Alexander Dworzak | idw
Weitere Informationen:
http://www.univie.ac.at/175
http://www.pnas.org

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten