Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Organbildung durch fließendes Gewebe

24.02.2015

Heidelberger Forscher revidieren mit einer Live-Analyse der Augenentwicklung die bisherige Lehrmeinung

Mit einer Live-Analyse der Augenentwicklung haben Wissenschaftler der Universitäten Heidelberg und Freiburg grundlegende neue Erkenntnisse zur Entstehung der Augenkrankheit Kolobom gewonnen und die bisherige Lehrmeinung zur Entwicklung des Sinnesorgans bei Wirbeltieren revidiert. Das Team um die Entwicklungs- und Zellbiologen Dr. Stephan Heermann und Prof. Dr. Jochen Wittbrodt vom Centre for Organismal Studies Heidelberg (COS) konnte mithilfe von 4D-Mikroskopie am lebenden Organismus zeigen, dass bei der Augenentwicklung gerichtete Gewebeströmungen das Augenbläschen in den Augenbecher umformen. Das ist nicht nur wesentlich für das Verständnis der Entstehung eines Koloboms („Katzenaugenkrankheit“), sondern es bedeutet auch, dass sich das Auge von Wirbeltieren, zu denen auch der Mensch zählt, ganz anders entwickelt als dies seit mehr als 70 Jahren gelehrt wird. Die Forschungsergebnisse wurden im Fachjournal eLife veröffentlicht.


Die Abbildung zeigt zwei Stadien der Augenentwicklung, das Augenbläschen (oben) und den Augenbecher (unten), jeweils in Bilddaten mit markierten Stammzell

Centre for Organismal Studies Heidelberg (COS)

Bei ihrer Analyse der Augenentwicklung kombinierten die Wissenschaftler, zu denen auch Prof. Dr. Kerstin Krieglstein von der Abteilung Molekulare Embryologie des Instituts für Anatomie und Zellbiologie der Universität Freiburg gehörte, moderne Genetik mit zeitaufgelöster Lebendzellmikroskopie. Dadurch gelang es ihnen, die Dynamik der Organbildung zu erfassen. Sie fanden dabei drei grundlegende Dinge heraus: „Wir wissen nun, dass ein Organ sich fließend bildet und nicht durch einen schrittweisen Aufbau. Wird dieser Fluss gestoppt, kommt es zu einem Kolobom. Und wir haben die Quelle der Stammzellen im Auge gefunden, was eine wichtige Erkenntnis für die Stammzellforschung ist“, erklärt Prof. Wittbrodt.

Das Auge ist eine Ausstülpung des Gehirns und bildet sich während der Embryonalentwicklung aus einem sackartigen Bläschen, das sich rasch in einen Augenbecher umformt mit der innenliegenden Netzhaut, die außen vom Pigmentepithel umschlossen wird. Misslingt dieser Schritt, kommt es zu großen Problemen, der Augenbecher schließt sich nicht und daraus resultiert ein Kolobom, eine der häufigsten Ursachen für kindliche Blindheit.

Bisher ging man bei der Transformation zum Augenbecher von einer sogenannten ortsständigen Entwicklung aus: Die innere Seite des Bechers entwickelt sich zur Netzhaut und die äußere Seite zum Pigmentepithel. „Bei der detaillierten Untersuchung dieses Entwicklungsschritts mit Hilfe von hochauflösender Videomikroskopie an lebenden Fischen stellten wir nun fest, dass sich der Augenbecher durch einen dynamischen Fluss von Zellen der äußeren in die innere Seite bildet, also das genaue Gegenteil einer ortsständigen Entwicklung“, erklärt Dr. Heermann. Zudem fanden die Wissenschaftler den Wachstumsfaktor, der den für die Augenentwicklung wesentlichen Fluss von Gewebe steuert. Dabei muss der Signalweg dieses Wachstumsfaktors BMP moduliert werden, damit das Gewebe fließen und so das Bläschen in den Becher transformieren kann. „Ohne diese Modulation bleibt das Gewebe auf der äußeren Seite stecken und beginnt sich dort in die Netzhaut zu entwickeln“, ergänzt Stephan Heermann.

Eine weitere wichtige Erkenntnis der Studie ist die enge Kopplung von Bewegung (Morphogenese) und Differenzierung. Bisher war bereits bekannt, dass die Differenzierung von Vorläuferzellen in Nervenzellen der Netzhaut im Zentrum des inneren Augenbechers beginnt und sich dann kontinuierlich in die Peripherie fortsetzt. „Die neuen Daten eröffnen nun einen völlig neuen Blickwinkel auf dieses Ereignis“, erklärt Jochen Wittbrodt: Die Zellen, die sich zuerst differenzieren, liegen demnach schon zu Beginn der Entwicklung im inneren Bereich des Augenbechers. Zellen, die erst später differenzieren, fließen erst später in den Augenbecher hinein, wo sie erst dann dem Einfluss von Differenzierungssignalen unterliegen. In der frühen Phase sind diese Zellen daher durch ihre Position den Signalen nicht ausgesetzt. Dies betrifft insbesondere die Stammzellen des untersuchten Modellsystems Fisch.

„Mit Hilfe der 4D-Mikroskopie konnten wir diese spezielle Population von Zellen nun identifizieren und analysieren“, erläutert Jochen Wittbrodt. Es wurde klar, dass es zwei festgelegte Areale in der äußeren Domäne des sich entwickelnden Augenbechers gibt, in der diese zukünftigen Stammzellen zunächst liegen. Diese Zellen erreichen den Augenbecher als letzte und kommen schließlich an der Grenze zwischen der Netzhaut und dem pigmentierten Epithel zu liegen. „Unsere Befunde beschreiben zum ersten Mal die Herkunft der Stammzellen im Auge von Fischen und implizieren eine frühe Festlegung dieser Zellen. Dies mag auf den ersten Blick von untergeordnetem Interesse für den Menschen erscheinen, der keine aktiven Stammzellen im Auge mehr aufweist. Dennoch sind diese Daten von herausragender Bedeutung für die Stammzellforschung.“

Darüber hinaus weisen die vorliegenden Ergebnisse hohe biomedizinische Relevanz auf, da sie die Entstehung eines Koloboms erklären, wie Stephan Heermann betont. Durch den beschriebenen zweigeteilten Fluss des Gewebes entsteht auf der unteren Seite des Auges ein Spalt, der Augenbecherspalt. Während der weiteren Entwicklung des Auges ist es nun essentiell, dass sich dieser Spalt schließt, damit das Auge in alle Richtungen sehen kann. „Die vorliegenden Daten zeigen eindrücklich, dass sowohl die Entwicklung des Augenbecherspalts als auch dessen Schluss ganz wesentlich von dem geordneten Gewebefluss abhängen.“ Bleibt der Augenbecherspalt offen, sprechen Mediziner von einem Kolobom.

Originalveröffentlichung:
S. Heermann, L. Schütz, S. Lemke, K. Krieglstein, J. Wittbrodt: Eye morphogenesis driven by epithelial flow into the optic cup facilitated by modulation of bone morphogenetic protein. eLIFE, February 24, 2015, doi: 10.7554/eLife.05216

Informationen im Internet:
Veröffentlichung: http://dx.doi.org/10.7554/eLife.05216
Filme zur Augenentwicklung:
http://youtu.be/IGjjRGHDYJE / http://youtu.be/Q6aMe9J6o8Q / http://youtu.be/g4HNk9NzajU

Kontakt:
PD Dr. Stephan Heermann, Prof. Dr. J. Wittbrodt
Centre for Organismal Studies
Tel. +49 6221 54-8687 (Heermann), -6499 (Wittbrodt)
stephan.heermann@cos.uni-heidelberg.de, jochen.wittbrodt@cos.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Tel. +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie