Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Organbildung durch fließendes Gewebe

24.02.2015

Heidelberger Forscher revidieren mit einer Live-Analyse der Augenentwicklung die bisherige Lehrmeinung

Mit einer Live-Analyse der Augenentwicklung haben Wissenschaftler der Universitäten Heidelberg und Freiburg grundlegende neue Erkenntnisse zur Entstehung der Augenkrankheit Kolobom gewonnen und die bisherige Lehrmeinung zur Entwicklung des Sinnesorgans bei Wirbeltieren revidiert. Das Team um die Entwicklungs- und Zellbiologen Dr. Stephan Heermann und Prof. Dr. Jochen Wittbrodt vom Centre for Organismal Studies Heidelberg (COS) konnte mithilfe von 4D-Mikroskopie am lebenden Organismus zeigen, dass bei der Augenentwicklung gerichtete Gewebeströmungen das Augenbläschen in den Augenbecher umformen. Das ist nicht nur wesentlich für das Verständnis der Entstehung eines Koloboms („Katzenaugenkrankheit“), sondern es bedeutet auch, dass sich das Auge von Wirbeltieren, zu denen auch der Mensch zählt, ganz anders entwickelt als dies seit mehr als 70 Jahren gelehrt wird. Die Forschungsergebnisse wurden im Fachjournal eLife veröffentlicht.


Die Abbildung zeigt zwei Stadien der Augenentwicklung, das Augenbläschen (oben) und den Augenbecher (unten), jeweils in Bilddaten mit markierten Stammzell

Centre for Organismal Studies Heidelberg (COS)

Bei ihrer Analyse der Augenentwicklung kombinierten die Wissenschaftler, zu denen auch Prof. Dr. Kerstin Krieglstein von der Abteilung Molekulare Embryologie des Instituts für Anatomie und Zellbiologie der Universität Freiburg gehörte, moderne Genetik mit zeitaufgelöster Lebendzellmikroskopie. Dadurch gelang es ihnen, die Dynamik der Organbildung zu erfassen. Sie fanden dabei drei grundlegende Dinge heraus: „Wir wissen nun, dass ein Organ sich fließend bildet und nicht durch einen schrittweisen Aufbau. Wird dieser Fluss gestoppt, kommt es zu einem Kolobom. Und wir haben die Quelle der Stammzellen im Auge gefunden, was eine wichtige Erkenntnis für die Stammzellforschung ist“, erklärt Prof. Wittbrodt.

Das Auge ist eine Ausstülpung des Gehirns und bildet sich während der Embryonalentwicklung aus einem sackartigen Bläschen, das sich rasch in einen Augenbecher umformt mit der innenliegenden Netzhaut, die außen vom Pigmentepithel umschlossen wird. Misslingt dieser Schritt, kommt es zu großen Problemen, der Augenbecher schließt sich nicht und daraus resultiert ein Kolobom, eine der häufigsten Ursachen für kindliche Blindheit.

Bisher ging man bei der Transformation zum Augenbecher von einer sogenannten ortsständigen Entwicklung aus: Die innere Seite des Bechers entwickelt sich zur Netzhaut und die äußere Seite zum Pigmentepithel. „Bei der detaillierten Untersuchung dieses Entwicklungsschritts mit Hilfe von hochauflösender Videomikroskopie an lebenden Fischen stellten wir nun fest, dass sich der Augenbecher durch einen dynamischen Fluss von Zellen der äußeren in die innere Seite bildet, also das genaue Gegenteil einer ortsständigen Entwicklung“, erklärt Dr. Heermann. Zudem fanden die Wissenschaftler den Wachstumsfaktor, der den für die Augenentwicklung wesentlichen Fluss von Gewebe steuert. Dabei muss der Signalweg dieses Wachstumsfaktors BMP moduliert werden, damit das Gewebe fließen und so das Bläschen in den Becher transformieren kann. „Ohne diese Modulation bleibt das Gewebe auf der äußeren Seite stecken und beginnt sich dort in die Netzhaut zu entwickeln“, ergänzt Stephan Heermann.

Eine weitere wichtige Erkenntnis der Studie ist die enge Kopplung von Bewegung (Morphogenese) und Differenzierung. Bisher war bereits bekannt, dass die Differenzierung von Vorläuferzellen in Nervenzellen der Netzhaut im Zentrum des inneren Augenbechers beginnt und sich dann kontinuierlich in die Peripherie fortsetzt. „Die neuen Daten eröffnen nun einen völlig neuen Blickwinkel auf dieses Ereignis“, erklärt Jochen Wittbrodt: Die Zellen, die sich zuerst differenzieren, liegen demnach schon zu Beginn der Entwicklung im inneren Bereich des Augenbechers. Zellen, die erst später differenzieren, fließen erst später in den Augenbecher hinein, wo sie erst dann dem Einfluss von Differenzierungssignalen unterliegen. In der frühen Phase sind diese Zellen daher durch ihre Position den Signalen nicht ausgesetzt. Dies betrifft insbesondere die Stammzellen des untersuchten Modellsystems Fisch.

„Mit Hilfe der 4D-Mikroskopie konnten wir diese spezielle Population von Zellen nun identifizieren und analysieren“, erläutert Jochen Wittbrodt. Es wurde klar, dass es zwei festgelegte Areale in der äußeren Domäne des sich entwickelnden Augenbechers gibt, in der diese zukünftigen Stammzellen zunächst liegen. Diese Zellen erreichen den Augenbecher als letzte und kommen schließlich an der Grenze zwischen der Netzhaut und dem pigmentierten Epithel zu liegen. „Unsere Befunde beschreiben zum ersten Mal die Herkunft der Stammzellen im Auge von Fischen und implizieren eine frühe Festlegung dieser Zellen. Dies mag auf den ersten Blick von untergeordnetem Interesse für den Menschen erscheinen, der keine aktiven Stammzellen im Auge mehr aufweist. Dennoch sind diese Daten von herausragender Bedeutung für die Stammzellforschung.“

Darüber hinaus weisen die vorliegenden Ergebnisse hohe biomedizinische Relevanz auf, da sie die Entstehung eines Koloboms erklären, wie Stephan Heermann betont. Durch den beschriebenen zweigeteilten Fluss des Gewebes entsteht auf der unteren Seite des Auges ein Spalt, der Augenbecherspalt. Während der weiteren Entwicklung des Auges ist es nun essentiell, dass sich dieser Spalt schließt, damit das Auge in alle Richtungen sehen kann. „Die vorliegenden Daten zeigen eindrücklich, dass sowohl die Entwicklung des Augenbecherspalts als auch dessen Schluss ganz wesentlich von dem geordneten Gewebefluss abhängen.“ Bleibt der Augenbecherspalt offen, sprechen Mediziner von einem Kolobom.

Originalveröffentlichung:
S. Heermann, L. Schütz, S. Lemke, K. Krieglstein, J. Wittbrodt: Eye morphogenesis driven by epithelial flow into the optic cup facilitated by modulation of bone morphogenetic protein. eLIFE, February 24, 2015, doi: 10.7554/eLife.05216

Informationen im Internet:
Veröffentlichung: http://dx.doi.org/10.7554/eLife.05216
Filme zur Augenentwicklung:
http://youtu.be/IGjjRGHDYJE / http://youtu.be/Q6aMe9J6o8Q / http://youtu.be/g4HNk9NzajU

Kontakt:
PD Dr. Stephan Heermann, Prof. Dr. J. Wittbrodt
Centre for Organismal Studies
Tel. +49 6221 54-8687 (Heermann), -6499 (Wittbrodt)
stephan.heermann@cos.uni-heidelberg.de, jochen.wittbrodt@cos.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Tel. +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie