Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Wege zur Biomasse-Nutzung

23.09.2008
Wolframcarbid als Katalysator für die kosteneffektive Umsetzung von Cellulose in industriell nutzbare Kohlenstoffverbindungen

Alternativen zu Erdöl und Erdgas als Kohlenstoffquelle und Brennstoff sind gefragt. Biomasse könnte dabei zukünftig einen bedeutenderen Stellenwert einnehmen.

Forscher aus den USA und China haben jetzt einen neuen Katalysator entwickelt, der Cellulose, die am weitesten verbreitete Form von Biomasse, direkt in Ethylenglycol umsetzt, ein wichtiges Zwischenprodukt der chemischen Industrie. Wie sie in der Zeitschrift Angewandte Chemie berichten, besteht der Katalysator aus Wolframcarbid und Nickel auf Kohlenstoff als Trägermaterial.

Derzeit wird Biomasse vor allem in Form von Stärke genutzt, die zu Zuckern abgebaut und zu Ethanol fermentiert wird. Cellulose zu nutzen, wäre günstiger; sie ist der Hauptbestandteil von pflanzlichen Zellwänden und damit die häufigste organische Verbindung der Erde. Anders als Stärke aus Mais und Getreide ist Cellulose zudem kein Nahrungsmittel, eine Konkurrenz zwischen einer Verwendung als Nahrungsmittel und als Roh- und Brennstoff könnte nicht entbrennen. Bisher wird Cellulose meist fermentativ verarbeitet. Die Spaltung von Cellulose in seine einzelnen Zuckerbausteine, die dann fermentiert werden könnten, ist jedoch ein langsamer, kostenintensiver Prozess. Entsprechend attraktiv erscheint die Alternative einer direkten Umsetzung der Cellulose in nutzbare organische Verbindungen.

Erste Reaktionen wurden entwickelt, die von verschiedenen Edelmetall-Katalysatoren katalysiert werden. Der Nachteil: Es werden große Mengen der teuren Edelmetalle benötigt, um die Cellulose abzubauen. Im großtechnischen Maßstab sind diese Verfahren daher nicht wirtschaftlich. Ein kostengünstigerer und dabei effektiverer Katalysator wäre wünschenswert.

Einen solchen hat das Team um Tao Zhang vom Dalian Institute of Chemical Physics (China) und Jingguang G. Chen von der University of Delaware (Newark, USA) nun entwickelt. Der Katalysator besteht aus Wolframcarbid, das auf einen Träger aus Kohlenstoff aufgebracht wird. Kleine Mengen Nickel verbessern die Leistungsfähigkeit und vor allem die Selektivität des Katalysatorsystems: Dank eines synergistischen Effekts zwischen Nickel und Wolframcarbid lässt sich die Cellulose nicht nur zu 100% umsetzen, sondern der Anteil von Ethylenglycol an den entstehenden Polyalkoholen auf erstaunliche 61% steigern. Ethylenglycol ist ein wichtiges Zwischenprodukt der chemischen Industrie. Es wird beispielsweise in der Kunststoffindustrie bei der Produktion von Polyesterfasern und -harzen benötigt und dient in der Automobilindustrie als Frostschutzmittel.

Angewandte Chemie: Presseinfo 37/2008

Autor: Jingguang G. Chen, University of Delaware, Newark (USA), http://www.che.udel.edu/research_groups/chen/

Angewandte Chemie, doi: 10.1002/ange.200803233

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.gdch.de/
http://presse.angewandte.de
http://www.che.udel.edu/research_groups/chen/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Workshop »Emissionsarme Bauprodukte und Wohngesundheit«

28.03.2017 | Seminare Workshops

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungsnachrichten

Nachwuchswissenschaftler blicken in die Quantenwelt

28.03.2017 | Seminare Workshops