Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Substanzen verbessern Medikamententransport in Zellen

06.09.2011
Biologen der TU Darmstadt haben Möglichkeiten gefunden, Wirkstoffe schneller in lebende Zellen zu transportieren. Das könnte die Medikamentendosis künftig drastisch reduzieren.

Medikamente entfalten ihre Wirkung erst, wenn sie von den entsprechenden Zellen des betroffenen Organs aufgenommen und dort für den Stoffwechsel verfügbar sind. Doch so unterschiedliche Zelltypen es gibt: Sie alle sind von einer Membran umgeben, die nur für ganz spezifische Stoffe beziehungsweise Partikel durchlässig ist.

Biomediziner suchen daher dringend neue Wege, um gezielt Medikamente in Zellen einzuschleusen. Einen großen Schritt vorangekommen sind nun Prof. Cristina Cardoso und Dr. Henry D. Herce vom Fachbereich Biologie der TU Darmstadt. Sie haben Möglichkeiten gefunden, den Transport insbesondere wasserlöslicher Stoffe deutlich zu verbessern.

Die Wissenschaftler beschäftigen sich schon seit mehreren Jahren mit kurzen Eiweißketten, die sich durch Zellmembranen bohren. Solche winzigen Eiweiße, sogenannte zellpenetrierende Peptide (CPP), können quasi als Vehikel für Wirkstoffe dienen, die einfach an sie angehängt und in die Zelle mitgeschleppt werden.

Ringförmige Eiweiße transportieren Medikamente schneller

Die Darmstädter Biologen haben nun in einer in der internationalen Fachzeitschrift Nature Communications (doi:10.1038/ncomms1459) veröffentlichten Arbeit gezeigt, dass ringförmige Eiweiße besonders gute Vehikel sind. Bei ihnen liegen sowohl Transportrate als auch Transportgeschwindigkeit deutlich höher als bei kettenförmigen CPPs. In der Praxis könnte das zur Folge haben, dass sich künftig sowohl die Medikamentendosen als auch die Zeit bis zum Einsetzen der Wirkung drastisch reduzieren ließen.

Das kleine Eiweiß TAT zum Beispiel ist eine längliche, flexible Kette, an deren „Rückgrat“ unterschiedliche Seitenzweige hängen. Dieses Rückgrat hat relativ viele Freiheitsgrade, ist also recht beweglich, ebenso wie die Seitenketten. Die Untersuchungen der Darmstädter zeigten, dass der Membrantransport durch eine weniger flexible Struktur des Transporters, wie sie in einer zyklischen Form vorliegt, stark begünstigt wurde. Denn ausschlaggebend scheint zu sein, dass sogenannte Guanidinium-Gruppen in den Seitenzweigen einen möglichst großen Abstand voneinander haben. Das ist am ehesten in der zyklischen Form der Fall, wenn das Rückgrat einen Kreis bildet und die Seitenzweige und damit die Guanidinium-Gruppen wie Sonnenstrahlen von dem Kreis abstehen. Das zyklische TAT gelangte so 15 Minuten früher in die Zelle als das übliche kettenförmige TAT. Der Ringschluss steigerte dabei nicht nur beim TAT, sondern auch bei anderen Arginin-reichen CPPs die Effizienz.

In Zukunft wollen die Biologen der TU Darmstadt den Transport konkreter wasserlöslicher Wirkstoffe erforschen. Zu klären bleibt auch noch, wie die Zelle mit den zyklischen Nanotransportern umgeht: ob sie sie wieder ausstößt, abbaut oder ob sie einfach in der Zelle verbleiben. Und letztendlich müssen die Versuche, die an unter künstlichen Bedingungen gehaltenen Zellen durchgeführt wurden, noch „in vivo“ bestätigt werden.

Pressekontakt
Dr. Henry D. Herce
06151/16-5074
hdherce@gmail.com
MI-Nr. 71/2011, Kneifel

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit