Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Einblicke in das Kraftwerk der Natur

11.09.2012
Wissenschaftler am Max-Planck-Institut für Chemische Energiekonversion (MPI CEC) haben ein langjähriges Rätsel der Photosyntheseforschung gelöst.

Mit Hilfe der Quantenchemie konnten sie überraschende Einblicke in die Eigenschaften des sauerstoffproduzierenden Komplexes (oxygen evolving complex, OEC) gewähren.


Abbildung (MPI CEC): Die Abbildung zeigt die beiden Strukturen des Zentrums von Photosystem II, ein natürlicher Katalysator, der Wasser oxidiert. Die beiden Strukturen wandeln sich ineinander um, indem ein Sauerstoffatom Bindungen mit zwei Manganatomen austauscht. Beide Strukturen erzeugen unterschiedliche spektroskopische Signale.

Der OEC ist ein in Pflanzen enthaltener Katalysator, der mit Sonnenlicht als Energiequelle Wasser spaltet, um Kohlenhydrate zu bilden, und somit das Leben auf der Erde mit Energie versorgt. Seine genaue Struktur, welche ein rätselhaftes spektroskopisches Verhalten zeigte, konnte nun mit Hilfe der Quantenchemie endlich gelöst werden.

Der OEC zeigte in einem bestimmten Oxidationszustand zwei verschiedenartige spektroskopische Signale. Diese beiden Signale konnten durch unterschiedliche Behandlung des Komplexes ineinander umgewandelt werden. Inwiefern sich dabei die Struktur des Moleküls änderte, blieb jedoch unklar. Die Signale sind außerdem so komplex, dass daraus eine detaillierte molekulare Struktur nicht abgeleitet werden konnte.

Mit Hilfe von theoretischer Spektroskopie konnte nun Dr. Dimitrios Pantazis, Wissenschaftler am MPI CEC, gemeinsam mit seinen Kollegen zeigen, dass die beiden Signale von zwei energetisch ähnlichen Strukturen herrühren, die sich zudem noch ineinander umwandeln.

Das Zentrum des Enzyms bildet eine teilweise kubische Struktur aus Mangan, Calcium und Sauerstoff (Mn4CaO5, s. Abbildung). "Die Berechnungen zeigen, dass die beiden Strukturen sich nur in einer Bindung unterscheiden, die zwischen dem zentralen Sauerstoffatom und den beiden endständigen Manganatomen wechselt", sagt Pantazis. Diese minimale Änderung hat große Auswirkungen auf die elektronische Struktur und somit auf das spektroskopische Verhalten des Moleküls.

Beide Strukturen haben eine ähnliche Energie, und der Bindungsaustausch hat nur eine niedrige Energiebarriere. Die Wissenschaftler am MPI konnten zusätzlich mit ihren Simulationen zeigen, dass jede der beiden Strukturen ein bestimmtes spektroskopisches Signal zeigt, und dass diese beiden Signale mit den experimentell gefundenen übereinstimmen.

Das tiefgehende Verständnis des OEC ist essentiell um das Geheimnis der Natur bei der Oxidation von Wasser zu entschlüsseln, eine Reaktion, die eine wesentliche Rolle in der Energieforschung spielt, wie z.B. bei der künstlichen Photosynthese.

Nach diesen bemerkenswerten Ergebnissen versuchen Pantazis und Kollegen nun herauszufinden, ob das Sauerstoffatom, welches die Bindungen austauscht, dasselbe ist, welches sich später im gebildeten Sauerstoff wieder findet. Die neuen Resultate werden den Prozess des Austausches der Wassermoleküle, die an der Reaktion beteiligt sind, näher beleuchten. Ein atomistisches, detailliertes Verständnis des Mechanismus der Wasseroxidation ist damit auf dem Weg.
Online veröffentlicht in Angewandte Chemie International Edition, August 21 http://dx.doi.org/10.1002/anie.201204705

Das Max-Planck-Institut für chemische Energiekonversion (MPI CEC) in Mülheim a.d.R. beschäftigt sich mit grundlegenden chemischen Prozessen, die bei der Speicherung und Umwandlung von Energie eine Rolle spielen. Das Ziel besteht darin, Sonnenlicht in kleinen, energiereichen Molekülen zu speichern und Energie so orts- und zeitunabhängig nutzbar zu machen. In den drei Abteilungen Heterogene Reaktionen, Molekulare Theorie und Spektroskopie und Biophysikalische Chemie arbeiten ca. 75 Forscher aus über 20 Ländern, und tragen mit ihrem Expertenwissen zur Vorbereitung einer nachhaltigen Energiewende bei.
Dr. Rebekka Loschen
Research Coordinator
Max Planck Institute for Chemical Energy Conversion
Stiftstr. 34-36
45470 Muelheim an der Ruhr
Germany
email: Rebekka.Loschen@cec.mpg.de
phone: +49 (0)208 306 3681
fax: +49 (0)208 306 3957

Dr. Rebekka Loschen | Max-Planck-Institut
Weitere Informationen:
http://www.cec.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten