Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mechanismus zur Evolution der ersten Stoffwechselprozesse entdeckt: Reaktionslawine am Ursprung des Lebens

19.01.2012
Die Entstehung erster Biomoleküle, die sich vervielfältigen und weiter entwickeln können gilt chemisch gesehen als der Ursprung des Lebens.

Dieser „Urstoffwechsel“ könnte in vulkanisch-hydrothermalen Strömungskanälen stattgefunden haben. Welche Reaktionen jedoch die Evolution dieses Urstoffwechsels auslösten, war bisher unklar.

Nun zeigten Wissenschaftler der TU München (TUM) im Laborversuch erstmals Mechanismen, mit denen wenige Biomoleküle lawinenartig neue Produkte hervorbringen und so einen selbst-expandierenden Stoffwechsel in Gang setzen können. Über ihre Ergebnisse berichtet die Fachzeitschrift „Chemistry – A European Journal“.

Vulkanisch-hydrothermale Strömungskanäle bieten eine chemisch einzigartige Umgebung, die auf den ersten Blick lebensfeindlich scheint. Es handelt sich um Risse in der Erdkruste, durch die Wasser strömt, das Vulkangase enthält und diverse Mineralien kontaktiert. Und doch – gerade in dieser extremen Umgebung könnten sich jene beiden Mechanismen entwickelt haben, die allem Leben zu Grunde liegen: Vervielfältigung von Biomolekülen (Reproduktion) und Entwicklung neuer Biomoleküle auf Basis der zuvor entstandenen Biomoleküle (Evolution).

Am Anfang dieser „Kettenreaktion“, die letztlich zur Entstehung zellulärer Lebewesen führte, stehen dabei nur einige wenige Aminosäuren, die aus den vulkanischen Gasen unter Katalyse durch die Mineralien gebildet werden. Ähnlich einem Dominostein, der eine ganze Lawine nach sich zieht, regen diese ersten Biomoleküle dann sowohl ihre eigene Vervielfältigung als auch die Produktion ganz neuer Biomoleküle an. „Auf diese Weise entsteht das Leben nach von Anfang an feststehenden Gesetzen der Chemie zwangsläufig und in einer vorgegebenen Richtung“, erklärt Günter Wächtershäuser, Honorarprofessor für evolutionäre Biochemie an der Universität Regensburg. Er hat den Mechanismus des sich selbst erzeugenden Urstoffwechsels theoretisch entwickelt – ein Laborbeweis jedoch fehlte bislang.

Nun gelang es Wissenschaftern um Claudia Huber und Wolfgang Eisenreich am Lehrstuhl für Biochemie der TU München, in enger Zusammenarbeit mit Wächtershäuser erstmals die Möglichkeit eines solchen, sich selbst anregenden Mechanismus im Labor direkt nachzuweisen. „Durch die Kombination moderner analytischer Verfahren erhalten wir immer mehr Einblicke in die molekularen Details des faszinierenden Reaktionsgeschehens“, sagt Eisenreich. Die zentrale Rolle kommt hierbei dem aus Verbindungen der Übergangsmetalle Nickel- Cobalt- oder Eisen bestehenden Katalysator zu. Er sorgt nicht nur dafür, dass die ersten Biomoleküle überhaupt entstehen können, sondern bildet zudem den Ursprung der Kettenreaktion. Der Grund: Die aus den vulkanischen Gasen gerade erst neu entstandenen Biomoleküle greifen am Zentrum des Übergangsmetall-Katalysators an und ermöglichen so weitere chemische Reaktionen, in denen ganz neue Biomoleküle geschaffen werden. „Diese Kopplung zwischen Katalysator und organischem Reaktionsprodukt ist der erste Schritt“, erklärt Wächtershäuser. „Leben entsteht, wenn es im Folgenden zu einer ganzen Kaskade weiterer Kopplungen kommt, die schließlich auch zur Bildung einer Erbsubstanz und erster Zellen führt“.

In ihren Versuchen ahmten die Forscher die Bedingungen hydrothermaler Strömungskanäle nach und etablierten ein wässrig-metallorganisches System, das eine ganze Reihe verschiedener Biomoleküle produziert, darunter auch die Aminosäuren Glycin und Alanin. Hierbei diente eine Cyano-Verbindung als Kohlenstoffquelle und Kohlenmonoxid als Reduktionsmittel. Nickelverbindungen erwiesen sich in den Versuchen als der effektivste Katalysator. Das entstandene Glycin und Alanin führten die Wissenschaftler dann einem weiteren System zu, das wiederum zwei neue Biomoleküle herstellte. Das Ergebnis: Die beiden Aminosäuren erhöhten die Produktivität des zweiten Systems um das Fünffache.

In folgenden Arbeiten möchten die Forscher die Bedingungen der vulkanisch-hydrothermalen Systeme, in denen das Leben vor Jahrmilliarden entstanden sein könnte noch genauer nachstellen. „Wir simulieren hierzu zunächst bestimmte Stadien in der Entwicklung eines vulkanisch-hydrothermalen Strömungssystems, um die wichtigen Parameter heraus zu finden“, erklärt Wächtershäuser. „Erst danach können wir uns mit der rationalen Konstruktion eines Strömungsreaktors befassen“.

Die Ergebnisse der Wissenschaftler um Wächtershäuser und Eisenreich zeigen, dass die Entstehung und Evolution von Leben im heißen Wasser vulkanischer Schlote praktisch möglich ist. Die Ergebnisse offenbaren Vorteile dieser Theorie im Vergleich zu anderen Ansätzen. In den vulkanischen Schloten ändern sich Temperatur, Druck und pH-Wert entlang des Strömungswegs und bieten so ein graduelles Spektrum von Bedingungen, das allen Stadien der frühen Evolution zuträglich ist, bis hin zur Entstehung der ersten Erbsubstanz (RNA/DNA).

Die wichtigste Eigenschaft des Systems jedoch ist seine Autonomie: Der erste Stoffwechsel wäre hier anders als beispielsweise beim Konzept einer „kühlen Ursuppe“ nicht auf Zufallsereignisse oder eine Jahrtausende andauernde Ansammlung wesentlicher Komponenten angewiesen. Ist der erste Dominostein erst einmal umgeworfen, fallen die anderen von selbst. Die Entstehung des Lebens bewegt sich in festen Bahnen, vorgegeben durch die Regeln der Chemie – ein chemisch determinierter Prozess an dessen Ende der Stammbaum aller Lebewesen steht.

Originalpublikation:

Elements of metabolic evolution 
C. Huber, F. Kraus, M. Hanzlik, W. Eisenreich, G. Wächtershäuser, Chemistry – A European Journal, advanced online publication: 13 Jan 2012 – DOI: 10.1002/chem.201102914

Link: http://onlinelibrary.wiley.com/doi/10.1002/chem.201102914/abstract

Frühere Publikation:

http://portal.mytum.de/pressestelle/pressemitteilungen/news_article.2008-05-19.2296948206

Kontakt:

Dr. Claudia Huber
Technische Universität München
Department Chemie
Lichtenbergstraße 4
85748 Garching, Germany
Tel: 089 289 13044 – Fax: 089 289 13363
E-Mail: claudia.huber@mytum.de
Internet: http://www.biochemie.ch.tum.de/index.php?id=993
Die Technische Universität München (TUM) ist mit rund 460 Professorinnen und Professoren, 9.000 Mitarbeiterinnen und Mitarbeitern und 31.000 Studierenden eine der führenden technischen Universitäten Europas. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. Das weltweite Netzwerk der TUM umfasst auch eine Dependance mit einem Forschungscampus in Singapur. Die TUM ist dem Leitbild einer unternehmerischen Universität verpflichtet.

Dr. Andreas Battenberg | Technische Universität München
Weitere Informationen:
http://www.forschung-garching.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie