Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leuchtspuren im Gehirn

11.08.2008
Indikator-Molekül ermöglicht erstmals Langzeitbeobachtung der Aktivität einzelner Nervenzellen

Wissenschaftler träumen schon lange davon, Nervenzellen im Gehirn direkt bei der Arbeit zu beobachten. So könnte zum Beispiel die Verarbeitung von Sinneseindrücken, die Veränderungen der Nervenzellen während eines Lernvorgangs, oder das Absterben von Nervenzellen im Alter und bei Krankheit untersucht werden.

Die dazu nötigen Langzeitbeobachtungen der Aktivität einzelner Nervenzellen waren jedoch bislang nicht möglich. Wissenschaftler des Max-Planck-Instituts für Neurobiologie haben nun ein Molekül entwickelt, dass von den Zellen selbst gebildet wird und zuverlässig über viele Wochen hinweg die Aktivität einzelner Nervenzellen anzeigt. Nature Methods, 10. August 2008

Das Gehirn bestimmt wer wir sind, was wir tun und wie wir die Welt wahrnehmen. Es ist daher kein Wunder, dass das Gehirn den Menschen schon immer faszinierte. Um zu verstehen wie das Gehirn funktioniert, muss man die "Sprache" der Nervenzellen verstehen - also das Muster ihrer elektrischen Aktivität interpretieren. Eine Schwierigkeit dabei ist, das Signal einer einzelnen Zelle aus den Signalen tausender Nachbarzellen herauszufiltern.

Ein einzelnes Signal über viele Wochen hinweg zu verfolgen, ist nahezu unmöglich. Diese Beobachtungen wären jedoch wichtig um zu erforschen, wie sich die Aktivität einzelner Zellen im Laufe einer Krankheit, während der Entwicklung und des Alterns, oder auch während Lernprozessen verändern. Solche Untersuchungen gehörten bislang ins Reich der Utopie.

Der Zellaktivität auf der Spur

In den letzten Jahren gab es jedoch wichtige Verbesserungen in den Untersuchungsmethoden. So wurden Fluoreszenz-Farbstoffe entwickelt, die die Aktivität einzelner Nervenzellen sichtbar machen. Die Grundlage dieser Farbstoffe sind synthetische Kalzium-Indikatoren, die auf die Bindung von Kalzium mit einer Veränderung ihrer Helligkeit reagieren. Kalzium kommt in jeder Nervenzelle vor und die Kalzium-Konzentration ändert sich, wenn eine Nervenzelle zum Beispiel ein elektrisches Signal weitergibt. Künstlich in eine Zelle eingebrachte Kalzium-Indikatoren können somit elektrische Signale der Zellen optisch sichtbar machen.

Zusätzlich hebt der fluoreszierende Farbstoff die damit gefüllte Zelle aus der Masse der Nervenzellen hervor und macht sie mit all ihren Verästelungen sichtbar. Mit Hilfe der modernen 2-Photonen-Mikroskopie können so die Aktivität und auch die Anatomie der markierten Zellen direkt im Gehirn studiert werden. Jedoch verblassen die künstlichen Farbstoffe meist nach kurzer Zeit wieder, was Langzeitbeobachtungen verhindert.

Eine Alternative zu den synthetisch hergestellten Farbstoffen sind genetisch kodierte Kalzium-Indikatoren. Diese Moleküle sind Proteine, die von einzelnen genetisch veränderten Nervenzellen selbst produziert werden. Ist die Nervenzelle aktiv, fluoreszieren die Indikator-Moleküle anstatt zuvor bläulich eher gelb. Störende Eingriffe von außen sind also nicht mehr nötig, um die Aktivität der Zellen sichtbar zu machen. Doch auch hier gibt es ein Problem: Im Vergleich zu den künstlichen Farbstoffen leuchteten diese genetisch-kodierten Indikator-Moleküle nur schwach und reagierten auch nur auf größere Änderungen in der Kalzium-Konzentration. So blieb eine schonende aber auch aussagekräftige Langzeitbeobachtung der Aktivität einzelner Nervenzellen weiterhin ein Wunschtraum.

TN-XXL: Die Antwort auf Forscherträume?

Dieser Traum scheint nun in Erfüllung zu gehen. Wissenschaftlern des Max-Planck-Instituts für Neurobiologie ist es gelungen, einen deutlich verbesserten Kalzium-Indikator zu entwickeln. TN-XXL, so der Name des Moleküls, ist viel empfindlicher als alle seine Vorgänger und reagiert schon auf kleinste Änderungen in der Aktivität von Nervenzellen. Da TN-XXL ständig von den Nervenzellen nachgebildet wird, ist die Leuchtkraft kontinuierlich hoch. So kann die Aktivität einzelner Nervenzellen über viele Wochen hinweg im intakten Gehirn beobachtet werden.

"TN-XXL sollte einigen Wirbel in den Neurowissenschaften verursachen", vermutet Oliver Griesbeck, der Leiter der Studie. Die nun erstmals mögliche Langzeitbeobachtung der Aktivität einzelner Nervenzellen ist eine wichtige Voraussetzung um zu verstehen, wie das Gehirn arbeitet und sich mit der Zeit verändert - sei es während seiner Entwicklung, des Alterns, oder um neue Informationen zu verarbeiten. Auch in der klinischen Forschung sieht Griesbeck Anwendungsmöglichkeiten für das neue Molekül: "TN-XXL kann zum Beispiel eingesetzt werden, um den Verlauf von Krankheiten oder die Effekte von Medikamenten im Körper zu verfolgen." Es sollte daher nicht lange dauern, bis TN-XXL neue Einblicke in die Arbeitsweise unseres Gehirns und auch unseres Körpers bringt.

Originalveröffentlichung:
Marco Mank, Alexandre Ferrão Santos, Stephan Direnberger, Thomas D. Mrsic-Flogel, Sonja B. Hofer, Valentin Stein, Thomas Hendel, Dierk F. Reiff, Christiaan Levelt, Alexander Borst, Tobias Bonhoeffer, Mark Hübener, Oliver Griesbeck
A genetically encoded calcium indicator for chronic in vivo two photon imaging
Nature Methods, 10. August 2008
Kontakt:
Dr. Stefanie Merker
Öffentlichkeitsarbeit
Am Klopferspitz 18, 82152 Martinsried
Tel: 089 - 8578 3514, Fax: 089 - 8995 0022
merker@neuro.mpg.de

Dr. Stefanie Merker | idw
Weitere Informationen:
http://www.neuro.mpg.de
http://www.neuro.mpg.de/english/junior/celldyn

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Frage der Dynamik
19.02.2018 | Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)

nachricht Forscherteam deckt die entscheidende Rolle des Enzyms PP5 bei Herzinsuffizienz auf
19.02.2018 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics