Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Immunsystem: Wie es reguliert wird

31.01.2011
Asthma, Diabetes, Rheuma: Solche Krankheiten können entstehen, wenn das Immunsystem nicht richtig funktioniert. Neues Wissen über die Regulation der Immunabwehr haben jetzt Forscher der Universitäten Würzburg und Mainz erarbeitet.

Schwierige Aufgabe: Das Immunsystem hat zwischen körpereigen und körperfremd zu unterscheiden. Einerseits muss es Krankheitserreger und Krebszellen bekämpfen. Andererseits darf es nicht den eigenen Organismus angreifen. Falls es das irrtümlicherweise doch tut, können so genannte Autoimmunkrankheiten entstehen. Rheuma, bestimmte Formen von Diabetes oder ein Hautleiden namens Schuppenflechte sind nur einige davon.

Um die gesunde Balance zu halten, muss das Immunsystem die Aktivität seiner zahlreichen Komponenten genau steuern. Eine zentrale Rolle spielen dabei die regulatorischen T-Zellen. Erst seit etwa zehn Jahren ist bekannt, dass sie Fehlreaktionen des Immunsystems dämpfen. Im Körper von Patienten mit Autoimmunkrankheiten sind zu wenige von ihnen vorhanden, bei Krebspatienten dagegen oft zu viele.

Regulatorische T-Zellen: Zielpunkte für Therapien

Was tun diese Zellen, wie steuern sie die Immunreaktion? Viele Wissenschaftler weltweit wollen das herausfinden – denn die regulatorischen T-Zellen sind interessante Angriffspunkte für neue Therapien. So besteht zum Beispiel die Hoffnung, eine bessere Immunantwort gegen Krebs zu erreichen, wenn man diese Zellen vorübergehend ausschaltet. Oder die Symptome von Autoimmunkrankheiten zu lindern, indem man die Zellen aktiviert.

Botenstoffe werden in „normale“ T-Zellen gepumpt

Die Eigenheiten der regulatorischen T-Zellen werden auch am Institut für Pathologie der Universität Würzburg ergründet, in der Forschungsgruppe von Professor Edgar Serfling. Etwas Spannendes haben die Würzburger mit Wissenschaftlern aus Mainz im Jahr 2007 entdeckt: Die regulatorischen T-Zellen können mit den „normalen“ T-Zellen des Immunsystems kommunizieren, indem sie kleine Verbindungstunnel zu ihnen anlegen und sie dann mit dem Botenstoff cAMP vollpumpen.

Als Reaktion darauf teilen sich die „normalen“ T-Zellen nicht mehr und stellen die Produktion entzündungsfördernder Stoffe ein. Das bremst die Aktivität der gesamten Immunabwehr. Im Fall einer Autoimmunkrankheit wäre das ein durchaus erwünschter Effekt.

Neue Erkenntnisse in PNAS publiziert

Wie genau schalten die regulatorischen die normalen T-Zellen aus? Das beschreiben die Würzburger und Mainzer Forscher in einer aktuellen Arbeit in der Zeitschrift PNAS. Der übertragene Botenstoff cAMP führt in den normalen T-Zellen zur verstärkten Produktion eines Proteins, das viele Gene lahm legt. „Davon betroffen ist auch das NFATc1-Gen, wodurch wiederum die Produktion von entzündungsfördernden Interleukinen gestoppt wird“, erklärt Professor Serfling.

Dieser neu entdeckte Ablauf sei ein ganz wesentlicher Schritt bei der Regulation des Immunsystems. Als nächstes wollen die Wissenschaftler weitere molekulare Details klären. Möglicherweise trägt das von ihnen erarbeitete Wissen in der Zukunft dazu bei, dass sich bei Autoimmun- und Krebskrankheiten neue Möglichkeiten der Behandlung eröffnen.

Ergebnisse in Sonderforschungsbereich erarbeitet

Erzielt wurden diese Ergebnisse im Sonderforschungsbereich (SFB)/Transregio 52 „Transkriptionelle Programmierung individueller T-Zell-Populationen“. Die treibenden Kräfte für die neue Publikation waren die Würzburger Forscher Martin Väth und Josef Bodor. Unterstützt wurden sie am Pathologischen Institut von Friederike Berberich-Siebelt und Edgar Serfling.

Edgar Serfling ist der Sprecher dieser SFB-Initiative, in der die Universitäten Würzburg und Mainz mit der Charité Universitätsmedizin Berlin kooperieren. Die Deutsche Forschungsgemeinschaft fördert den SFB seit Juli 2008 mit rund 12 Millionen Euro für zunächst vier Jahre.

„Regulatory T cells facilitate the nuclear accumulation of inducible cAMP early repressor (ICER) and suppress nuclear factor of activated T cells c1 (NFATc1)”, Martin Väth, Tea Gogishvilib, Tobias Bopp, Matthias Klein, Friederike Berberich-Siebelt, Stefan Gattenlöhner, Andris Avots, Tim Sparwasser, Nadine Grebe, Edgar Schmitt, Thomas Hünig, Edgar Serfling und Josef Bodor. PNAS, online publiziert am 24. Januar 2011, doi: 10.1073/pnas.1009463108

Kontakt

Prof. Dr. Edgar Serfling, Institut für Pathologie der Universität Würzburg,
T (0931) 201-47431, serfling.e@mail.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: Autoimmunkrankheit Botenstoff Diabetes Immunabwehr Immunsystem PNAS Pathologie Rheuma T cells T-Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Einblicke in die Welt der Trypanosomen
16.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht Geographie verrät das Alter von Viren
16.08.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie