Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit höchster Konzentration ins Ziel – Nanopartikel schleusen Wirkstoff in Krebszellen ein

11.08.2010
Krebszellen vermehren sich unkontrolliert und bedrohen so gesundes Gewebe. Ein Weg gegen ihre Ausbreitung könnte in Zukunft direkt über das Innere der kranken Zellen führen.

In enger Zusammenarbeit ist es drei Arbeitsgruppen der Ludwig-Maximilians-Universität (LMU) München und des Exzellenzclusters Nanosystems Initiative Munich (NIM) gelungen, den Wirkstoff Colchicin in konzentrierter Form mit Hilfe von Nanopartikeln direkt in Zellen einzuschleusen.

Colchicin hemmt die Zellteilung und somit die Vermehrung von Krebszellen. Als Grundlage dienten den Forschern der LMU winzige Silikatpartikel mit einem Durchmesser von rund 50 Nanometern (1 Nanometer = 1 Milliardstel Meter). Die Partikel sind in dieser Größe klein genug, um eine Zellmembran zu durchdringen und aufgrund ihrer porösen Struktur können Wirkstoffe wie Colchicin gut absorbiert werden. Damit der Wirkstoff nicht schon vor seinem Ziel auf dem Weg durch den Körper freigesetzt wird, entwickelten die Wissenschaftler eine Art Schutzhülle, die dies verhindert. Mit nur einem Behandlungsschritt schafften sie es, die Partikel mit einer Doppelschicht aus Lipidmolekülen zu überziehen, die die Wirkstoffe erst im Zellinneren wirklich entweichen lässt. Das Prinzip sei universell einsetzbar, erklärt Professor Bein: „Colchicin dient hier als ein Beispiel für zahlreiche andere Wirkstoffe, die auf diese Weise in Zellen eingeschleust werden könnten.“

Nanopartikel sind so klein, dass sie über die Membran, die die natürliche Barriere einer Zelle bildet, in deren Innenraum eindringen können. Diese Fähigkeit könnte in Zukunft gerade für die Behandlung von Krebszellen große Chancen bieten. In ersten Versuchen wurde bereits gezeigt, dass die mit Wirkstoffen beladenen Partikel diese gezielt in die befallenen Zellen transportieren. Die benötigte Medikamentendosis könnte dadurch deutlich verringert und damit auch mögliche unerwünschte Nebenwirkungen reduziert werden. Entscheidend hierfür ist jedoch, dass die Wirkstoffe bis zum Eintritt in die Zelle im Nanopartikel verbleiben.

LMU-Wissenschaftler aus den Arbeitsgruppen der Professoren Joachim Rädler (Fakultät für Physik), Christoph Bräuchle und Thomas Bein (beide Department Chemie) entwickelten gemeinsam eine Methode, um die Wirkstoffe in den Nanoteilchen zu halten. Dazu gaben sie die Partikel in eine alkoholische Lösung mit Lipid-Molekülen und fügten schrittweise Wasser hinzu. Mit steigendem Wassergehalt bildeten die Lipide von selbst eine Hülle um die Partikel in Form einer Lipid-Doppelschicht. Wie dicht dieser Überzug ist, zeigte ein Test mit Farbstoffmolekülen. Statt mit einem Wirkstoff beluden die Wissenschaftler hierfür die Nanopartikel mit einem Fluoreszenzfarbstoff und gaben sie in eine Küvette mit Wasser. Während die unpräparierten Nanopartikel ohne Lipidhülle nach einer Stunde den Großteil der Farbmoleküle nach außen abgegeben hatten, ließ sich im Wasser des zweiten Ansatzes mit umhüllten Partikeln keinerlei Farbstoff nachweisen. Colchicin konnte durch die Lipidschicht in parallelen Versuchen nicht vollständig zurückgehalten werden, Spuren des Wirkstoffes fanden sich im Medium außerhalb der Partikel. Der größte Teil des Medikamentes diffundierte jedoch erst nach dem Eintritt in die Zielzelle und konnte dort seine wachstumshemmende Wirkung entfalten.

„Unsere Ergebnisse zeigen, dass der Verschluss von porösen Nanopartikeln mit Lipiden ein effektives Konzept zur Beladung mit Wirkstoffen ist. Dies ermutigt uns, auch andere pharmazeutische Wirkstoffe auf diese Weise in Zellen zu transportieren und deren Wirksamkeit zu untersuchen. Wir sehen hier ein großes Potenzial für die gezielte Freisetzung von Medikamenten, “ so Professor Bein. (NIM/bige)

Publikation:
„Colchicine-loaded lipid bilayer-coated 50 nm mesoporous nanoparticles efficiently induce microtubule depolymerization upon cell uptake“,
Valentina Cauda, Hanna Engelke, Anna Sauer, Dephine Arcizet, Christoph Bräuchle, Joachim Rädler and Thomas Bein.

Nano Letters 2010, 10, S. 2484-2492

Ansprechpartner:
Prof. Dr. Thomas Bein
Department für Chemie der LMU
Tel.: 089 / 2180 - 77623
E-Mail: bein@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/
http://bein.cup.uni-muenchen.de

Weitere Berichte zu: Bein Bräuchle Colchicin Krebszelle LMU Lipide Medikament Nanometer Nanopartikel Partikel Wirkstoff Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Arten in der Nordsee-Kita
05.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Alter beeinflusst den Mikronährstoffgehalt im Blut
05.12.2016 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden «Krebssignatur» in Proteinen

05.12.2016 | Biowissenschaften Chemie

Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt

05.12.2016 | Geowissenschaften

Frühwarnsignale für Seen halten nicht, was sie versprechen

05.12.2016 | Ökologie Umwelt- Naturschutz