Geschmolzene Proteine

Proteine sind Feststoffe. Beim Erhitzen zersetzen sie sich meist bevor sie schmelzen oder gehen bei niedrigen Drücken in die Gasphase über.

In die flüssige Form lassen sie sich nicht überführen, es sei denn, man löst sie in einem Lösungsmittel. Ein Team von der University of Bristol (UK) und dem Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Golm hat es jetzt erstmals geschafft, ein Protein ohne Zuhilfenahme eines Lösungsmittels zu verflüssigen.

Wie die Forscher um Stephen Mann in der Zeitschrift Angewandte Chemie berichten, liegt der Trick darin, die Proteinoberfläche mit einem polymeren Tensid zu modifizieren.

Die Wissenschaftler verwendeten Ferritin für ihre Versuche, ein großes Protein, das Tieren und Pflanzen als Speicherstoff für Eisen dient. Ferritin bildet eine Hohlkugel, in der tausende Eisenionen Platz haben. An die Oberfläche solcher eisenhaltigen Ferritin-Kugeln knüpfte Manns Mitarbeiter Adam Perriman Polymerketten aus je einem Polyethylenoxid- und einem Kohlenwasserstoff-Teil. Pro Ferritin-Molekül wurden etwa 240 Polymerketten angeknüpft. Eine Lösung der so modifizierten Proteine wurde gefriergetrocknet.

Das erhaltene trockene Pulver ließ sich aufschmelzen zu einer transparenten, zähen roten Flüssigkeit, die erst bei Abkühlen auf -50 °C wieder erstarrte. Im Temperaturbereich zwischen 30 und 37 °C liegt das modifizierte Protein als Flüssigkristall vor, d. h. die Moleküle sind zwar eine mehr oder weniger einheitlich orientiert, aber nicht (oder nur teilweise) wie in einem festen Kristall in einem dreidimensionalen Gitter angeordnet. Bei höheren Temperaturen verhält sich das modifizierte Protein wie eine normale Flüssigkeit. Erst oberhalb von 400 °C zersetzt es sich.

Wie funktioniert die Verflüssigung? Die Tensid-Ketten auf der Oberfläche des Ferritins halten die Proteinkügelchen auf Abstand und schirmen ihre Oberfläche ab. Dadurch kommen die elektrostatischen Anziehungskräfte zwischen polaren Molekülgruppen benachbarter Kügelchen nicht mehr zum Tragen, die sonst dafür sorgen, dass die Proteine als Feststoff zusammengehalten werden. Was die Kügelchen nun zusammen hält, sind Anziehungskräfte zwischen den Kohlenwasserstoffenden der Tensid-Ketten. Diese Kräfte reichen nur noch für einen Zusammenhalt als Flüssigkeit aus. Zwischen 30 und 37 °C richten sich die Tensid-Ketten in einer geordneten Weise aus, die Substanz zeigt flüssigkristalline Eigenschaften.

„Das sind spannende Resultate mit einer grundlegenden Bedeutung für das Verständnis von Flüssigkeiten, die aus nanostrukturierten Komponenten bestehen,“ sagt Mann. „Außerdem könnte dies ein möglicher Weg sein, biomolekulare Stoffe in einem neuartigen Zustand herzustellen. Eine Reihe interessanter Anwendungen sind denkbar, beispielsweise für die Biomedizin und die Sensorik.“

Angewandte Chemie: Presseinfo 31/2009

Autor: Stephen Mann, University of Bristol (UK), http://www.chm.bris.ac.uk/inorg/mann/webpage.htm

Angewandte Chemie 2009, 121, No. 34, 6360-6364, doi: 10.1002/ange.200903100

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Media Contact

Dr. Renate Hoer GDCh

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Für kostengünstigere, nachhaltigere Akkus

Ultraniedrig konzentrierter Elektrolyt für Lithium-Ionen-Batterien Lithium-Salze machen Akkumulatoren leistungsfähig, aber teuer. Ein ultraniedrig konzentrierter Elektrolyt auf Basis des Lithium-Salzes LiDFOB könnte eine kostengünstige und dabei nachhaltigere Alternative sein. Zellen mit…

Partner & Förderer