Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gentherapie hilft Mäusen mit erblicher Herzerkrankung

03.12.2014

Junge Mäuse, die unter einer schweren erblich-bedingten Herzmuskelerkrankung, der Hypertrophen Kardiomyopathie (HCM) leiden, können mittels Gentherapie geheilt werden, zeigten Forscherinnen und Forscher des Deutschen Zentrums für Herz-Kreislauf-Forschung. Sie berichten darüber in Nature Communications. Die Forscher wollen nun untersuchen, ob ihre Ergebnisse auf den Menschen übertragbar sind.

Rund einer von fünfhundert Menschen kommt mit einem Gendefekt am Herzmuskel zur Welt. Dieser Defekt kann dazu führen, dass die Muskelwand der linken Herzkammer verdickt ist – die sogenannte Hypertrophe Kardiomyopathie (HCM). Das Herz kann schlechter pumpen und neigt zu Herzrhythmusstörungen. Bei jungen, sportlichen Menschen ist HCM die häufigste Ursache für den plötzlichen Herztod. Eine besonders schwere Form der HCM, unter der bereits Neugeborene leiden, führt innerhalb des ersten Lebensjahres zum Tod.

Die HCM kann durch unterschiedliche Gendefekte ausgelöst werden. In jedem Fall werden Struktur und Funktion von Proteinen des Sarkomers beeinflusst, das sind jene Proteine, die für die An- und Entspannung des Herzmuskels verantwortlich sind. HCM kann bislang nicht geheilt werden. Die Patienten erhalten Medikamente, welche die Krankheitssymptome lindern. Bei schweren Formen hilft nur eine Herztransplantation.

Wissenschaftlerinnen und Wissenschaftler des Deutschen Zentrums für Herz-Kreislauf-Forschung (DZHK) haben nun erstmals einen vielversprechenden Ansatz für eine Gentherapie der HCM am Mausmodell getestet. Bei einer Gentherapie wird der falsche Bauplan für ein Protein durch den richtigen ersetzt. Das gesunde Protein wird vor Ort dauerhaft produziert, der Patient wird geheilt.

Die Forscher um Prof. Dr. Lucie Carrier vom Universitätsklinikum Hamburg-Eppendorf (UKE) wählten für ihre Versuche Mäuse aus, die an Neugeborenen-HCM erkrankt waren. Diese schwerwiegende Form der HCM wird durch eine sehr häufige Veränderung im Gen für das kardiale Myosin-bindende Protein-C (cMyBP-C) verursacht. Die Forscher schleusten das korrekte genetische Material mit Hilfe eines in der Molekularbiologie üblichen Transportvehikels, einer ungefährlichen Virushülle, zielgerichtet in die Zellen des Herzmuskels ein.

Die erkrankten, einen Tag alten Mäuse erhielten eine einmalige Dosis des therapeutischen Gens. In einem Zeitraum bis 34 Wochen nach der Behandlung untersuchten die Forscher Morphologie und Pumpeigenschaften der Mäuseherzen. Diese unterschieden sich kaum noch von gesunden Herzen. Außerdem konnten die Forscher nachweisen, dass die Herzmuskelzellen ungefähr zwei Drittel des gesunden cMyBP-C-Proteins produzierten, vor der Behandlung produzierten die Zellen nur zehn Prozent.

Die Befunde stimmen die Forscher optimistisch, sie wollen nun versuchen, die Ergebnisse auf den Menschen zu übertragen. Diese Schritte sind erfahrungsgemäß sehr aufwändig und wurden in der Vergangenheit in vergleichbaren Fällen oft gar nicht in Angriff genommen. Im DZHK gibt es deshalb extra für die „Translation“, also für die Übertragung von Ergebnissen der Grundlagenforschung in die klinische Anwendung, konzipierte Programme und Fördermöglichkeiten.

Originalarbeit:
Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice
Nature Communications, 2nd Dec DOI: 10.1038/ncomms6515
http://www.nature.com/ncomms/2014/141202/ncomms6515/full/ncomms6515.html

Christine Vollgraf | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie