Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gen für gefiederte Blätter

14.02.2014
Arabidopsis thaliana hat in der Evolution das RCO-Gen verloren und bildet deshalb ungeteilte Blätter

Spinat sieht anders aus als Petersilie, Basilikum hat eine andere Form als Thymian. Jede Pflanze hat eine typische Blattform, die innerhalb einer Pflanzenfamilie wechseln kann. Die Information für die Blattform ist im Erbgut hinterlegt.


Die Ackerschmalwand besitzt ganzrandige Blätter (links), das Behaarte Schaumkraut dagegen Fiederblätter (rechts).

© MPI f. Pflanzenzüchtungsforschung/ Lempe


In den Blättern der Ackerschmalwand (links) fehlt das RCO-Gen - sie bleiben deshalb ungeteilt. In den Blättern des Schaumkrauts (Mitte) hemmt das RCO-Gen das Zellwachstum zwischen den Fiederblättern (rechts; blau: aktives RCO-Gen). Dadurch teilt sich das Blattgewebe in mehrere getrennte Blättchen.

© MPI f. Pflanzenzüchtungsforschung/ Lempe

Forschern vom Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln zufolge verdankt das Behaarte Schaumkraut (Cardamine hirsuta) seine gefiederten Blätter einem Gen, das Zellteilung und -wachstum zwischen den einzelnen Blättchen hemmt. Auf diese Weise entstehen voneinander getrennte Fiederblättchen. Der Ackerschmalwand (Arabidopsis thaliana) fehlt dieses Gen. Deshalb sind seine Blätter nicht gefiedert, sondern ungeteilt und ganzrandig.

Miltos Tsiantis und seine Kollegen vom Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln haben das neue Gen bei einem Vergleich zwischen zwei Kreuzblütlern entdeckt: Cardamine hirsuta hat gefiederte, Arabidopsis thaliana ungeteilte Blätter. Die Forscher haben das „reduced complexity“-Gen (RCO-Gen) identifiziert, das den Blättern des Schaumkrauts eine komplexere Form verleiht. Arabidopsis fehlt dieses Gen und damit fehlen auch die Fiedern. RCO ist nur in heranwachsenden Blättern aktiv. Es sorgt dafür, dass Zellteilung und -wachstum am Blattrand zwischen den Fiederblättern unterbunden wird. „Die Blätter von Arabidopsis sind ungeteilt und ganzrandig, weil die Wachstumshemmung durch das RCO-Gen unterbleibt“, erklärt Tsiantis. “Ohne den Vergleich beider Pflanzen hätten wir diesen Unterschied nie entdeckt, denn wo kein Gen mehr ist, kann man auch nichts mehr finden“, so Tsiantis weiter.

Eine Mutation in einer Pflanze des Behaarten Schaumkrauts brachte die Wissenschaftler auf die Spur des RCO-Gens. Ohne das Gen kann auch das Schaumkraut keine Fiederblätter ausbilden. Das RCO-Gen gehört zu einer Gruppe von drei Genen, die während der Evolution durch die Vervielfältigung eines einzigen Gens entstanden sind. Die ursprüngliche Dreier-Gruppe besteht bei der Ackerschmalwand nur noch aus einem einzigen Gen. Wenn die Wissenschaftler der Ackerschmalwand im Labor das RCO-Gen des Schaumkrauts zurückgeben, wird die Evolution teilweise rückgängig gemacht. „Die einfachen ovalen Blätter von Arabidopsis bilden dann tiefe Einbuchtungen“, sagt Tsiantis, „Die Tatsache, dass die Blattform allein durch den Transfer des RCO-Gens wieder komplexer wird, zeigt, dass der größte Teil des Apparats für die Ausbildung der Fiedern bei der Ackerschmalwand noch vorhanden sein muss und nicht zusammen mit dem RCO-Gen verloren gegangen ist“.

Das Forscherteam hat sich zudem den DNA-Code des RCO-Gens genauer angeschaut und herausgefunden, dass es zu den sogenannten Homeobox-Genen gehört. Das Gen zählt zu den Homeobox-Genen. Diese Gene funktionieren wie genetische Schalter, indem sie andere Gene an- oder abschalten. Die Wissenschaftler konnten des Weiteren zeigen, dass RCO nur die Blattform beeinflusst. Es entscheidet nicht darüber, ob überhaupt Blätter entstehen. Der Verlust des RCO-Gens führt beim Behaarten Schaumkraut zu keinen anderen sichtbaren Veränderungen. Seine Wirkung beschränkt sich also nur auf die Wachstumshemmung am Blattrand. RCO arbeitet dabei nicht mit dem Pflanzenhormon Auxin zusammen. Seine Eigenschaften machen das RCO-Gen vermutlich zu einer wichtigen Triebfeder der Evolution der Blattform – mehr als jedes andere bisher entdeckte Gen. Tsiantis und seine Kollegen wollen in den kommenden Monaten seine genaue Wirkweise entschlüsseln.

Die Wissenschaftler haben auch die beiden Gene untersucht, die mit RCO eine Gruppe bilden und die während der Evolution durch die Verdoppelung eines Vorläufergens entstanden sind. Sie wollten wissen, wie die neue Funktion von RCO entstanden ist. Offensichtlich liegt der wesentliche Unterschied in den Kontrollregionen der Gene, nicht in den Proteinsequenzen. Diese legen fest, wann und wo das jeweilige Gen abgelesen wird. Bringt man eines der anderen beiden Gene unter die Ägide der RCO-Kontrollregion, bildet Arabidopsis komplexe Blätter. Das behaarte Schaumkraut verdankt seine gefiederten Blätter also vor allem der Kontrollregion des RCO-Gens.

Originalveröffentlichung:
Daniela Vlad et al.
Leaf Shape Evolution Through Duplication, Regulatory Diversification, and Loss of a Homeobox Gene.

Science, 14. Februar 2014 (DOI: 10.1126/science.1248384)

Ansprechpartner:
Professor Dr. Miltos Tsiantis
Max-Planck-Institut für Pflanzenzüchtungsforschung
Carl von Linné Weg 10
50829 Köln
Tel: +49-221-5062-105
tsiantis@mpipz.mpg.de

Prof. Dr. Miltos Tsiantis | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7916252/blatt_gene_pflanzen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten