Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gen für gefiederte Blätter

14.02.2014
Arabidopsis thaliana hat in der Evolution das RCO-Gen verloren und bildet deshalb ungeteilte Blätter

Spinat sieht anders aus als Petersilie, Basilikum hat eine andere Form als Thymian. Jede Pflanze hat eine typische Blattform, die innerhalb einer Pflanzenfamilie wechseln kann. Die Information für die Blattform ist im Erbgut hinterlegt.


Die Ackerschmalwand besitzt ganzrandige Blätter (links), das Behaarte Schaumkraut dagegen Fiederblätter (rechts).

© MPI f. Pflanzenzüchtungsforschung/ Lempe


In den Blättern der Ackerschmalwand (links) fehlt das RCO-Gen - sie bleiben deshalb ungeteilt. In den Blättern des Schaumkrauts (Mitte) hemmt das RCO-Gen das Zellwachstum zwischen den Fiederblättern (rechts; blau: aktives RCO-Gen). Dadurch teilt sich das Blattgewebe in mehrere getrennte Blättchen.

© MPI f. Pflanzenzüchtungsforschung/ Lempe

Forschern vom Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln zufolge verdankt das Behaarte Schaumkraut (Cardamine hirsuta) seine gefiederten Blätter einem Gen, das Zellteilung und -wachstum zwischen den einzelnen Blättchen hemmt. Auf diese Weise entstehen voneinander getrennte Fiederblättchen. Der Ackerschmalwand (Arabidopsis thaliana) fehlt dieses Gen. Deshalb sind seine Blätter nicht gefiedert, sondern ungeteilt und ganzrandig.

Miltos Tsiantis und seine Kollegen vom Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln haben das neue Gen bei einem Vergleich zwischen zwei Kreuzblütlern entdeckt: Cardamine hirsuta hat gefiederte, Arabidopsis thaliana ungeteilte Blätter. Die Forscher haben das „reduced complexity“-Gen (RCO-Gen) identifiziert, das den Blättern des Schaumkrauts eine komplexere Form verleiht. Arabidopsis fehlt dieses Gen und damit fehlen auch die Fiedern. RCO ist nur in heranwachsenden Blättern aktiv. Es sorgt dafür, dass Zellteilung und -wachstum am Blattrand zwischen den Fiederblättern unterbunden wird. „Die Blätter von Arabidopsis sind ungeteilt und ganzrandig, weil die Wachstumshemmung durch das RCO-Gen unterbleibt“, erklärt Tsiantis. “Ohne den Vergleich beider Pflanzen hätten wir diesen Unterschied nie entdeckt, denn wo kein Gen mehr ist, kann man auch nichts mehr finden“, so Tsiantis weiter.

Eine Mutation in einer Pflanze des Behaarten Schaumkrauts brachte die Wissenschaftler auf die Spur des RCO-Gens. Ohne das Gen kann auch das Schaumkraut keine Fiederblätter ausbilden. Das RCO-Gen gehört zu einer Gruppe von drei Genen, die während der Evolution durch die Vervielfältigung eines einzigen Gens entstanden sind. Die ursprüngliche Dreier-Gruppe besteht bei der Ackerschmalwand nur noch aus einem einzigen Gen. Wenn die Wissenschaftler der Ackerschmalwand im Labor das RCO-Gen des Schaumkrauts zurückgeben, wird die Evolution teilweise rückgängig gemacht. „Die einfachen ovalen Blätter von Arabidopsis bilden dann tiefe Einbuchtungen“, sagt Tsiantis, „Die Tatsache, dass die Blattform allein durch den Transfer des RCO-Gens wieder komplexer wird, zeigt, dass der größte Teil des Apparats für die Ausbildung der Fiedern bei der Ackerschmalwand noch vorhanden sein muss und nicht zusammen mit dem RCO-Gen verloren gegangen ist“.

Das Forscherteam hat sich zudem den DNA-Code des RCO-Gens genauer angeschaut und herausgefunden, dass es zu den sogenannten Homeobox-Genen gehört. Das Gen zählt zu den Homeobox-Genen. Diese Gene funktionieren wie genetische Schalter, indem sie andere Gene an- oder abschalten. Die Wissenschaftler konnten des Weiteren zeigen, dass RCO nur die Blattform beeinflusst. Es entscheidet nicht darüber, ob überhaupt Blätter entstehen. Der Verlust des RCO-Gens führt beim Behaarten Schaumkraut zu keinen anderen sichtbaren Veränderungen. Seine Wirkung beschränkt sich also nur auf die Wachstumshemmung am Blattrand. RCO arbeitet dabei nicht mit dem Pflanzenhormon Auxin zusammen. Seine Eigenschaften machen das RCO-Gen vermutlich zu einer wichtigen Triebfeder der Evolution der Blattform – mehr als jedes andere bisher entdeckte Gen. Tsiantis und seine Kollegen wollen in den kommenden Monaten seine genaue Wirkweise entschlüsseln.

Die Wissenschaftler haben auch die beiden Gene untersucht, die mit RCO eine Gruppe bilden und die während der Evolution durch die Verdoppelung eines Vorläufergens entstanden sind. Sie wollten wissen, wie die neue Funktion von RCO entstanden ist. Offensichtlich liegt der wesentliche Unterschied in den Kontrollregionen der Gene, nicht in den Proteinsequenzen. Diese legen fest, wann und wo das jeweilige Gen abgelesen wird. Bringt man eines der anderen beiden Gene unter die Ägide der RCO-Kontrollregion, bildet Arabidopsis komplexe Blätter. Das behaarte Schaumkraut verdankt seine gefiederten Blätter also vor allem der Kontrollregion des RCO-Gens.

Originalveröffentlichung:
Daniela Vlad et al.
Leaf Shape Evolution Through Duplication, Regulatory Diversification, and Loss of a Homeobox Gene.

Science, 14. Februar 2014 (DOI: 10.1126/science.1248384)

Ansprechpartner:
Professor Dr. Miltos Tsiantis
Max-Planck-Institut für Pflanzenzüchtungsforschung
Carl von Linné Weg 10
50829 Köln
Tel: +49-221-5062-105
tsiantis@mpipz.mpg.de

Prof. Dr. Miltos Tsiantis | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7916252/blatt_gene_pflanzen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie