Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Flosse ab und trotzdem nicht arm dran“ - Grundlegender Mechanismus zur Geweberegeneration entdeckt

26.03.2014

Zebrafische können verletzte oder teilamputierte Flossen komplett regenerieren. Wissenschaftler der Universität Ulm haben nun einen neuen zentralen Steuerungsmechanismus für die Flossen-Regeneration aufgedeckt.

Die Biologen aus der Gruppe von Prof. Dr. Gilbert Weidinger haben herausgefunden, dass Wnt-Signale die Zellvermehrungs- und Gewebsbildungsprozesse indirekt über die Einrichtung von "Signalzentren" im Blastem steuern. Veröffentlicht wurden diese Ergebnisse in Cell Reports


Nach einigen Wochen ist die verlorene Flosse wieder vollständig nachgewachsen.

Fotos: Daniel Wehner

Man stelle sich das einmal vor: Ein Mensch verliert durch einen Unfall einen Arm, und nach ein paar Wochen ist dieser von sich aus komplett nachgewachsen. Was etwas gruselig und nach Science-Fiction klingt, ist für den Zebrafisch in Bezug auf seine Flossen eine Selbstverständlichkeit.

„Der drei bis vier Zentimeter kleine Fisch, der im Deutschen eigentlich Zebrabärbling heißt, hat eine Eigenheit, um die ihn wohl nicht nur die Unfall-Chirurgie beneidet. Er kann verletzte oder teilamputierte Flossen komplett regenerieren“, erklärt Professor Gilbert Weidinger. Der Biologe vom Institut für Biochemie und Molekulare Biologie der Universität Ulm hat nun mit Kollegen einen neuen zentralen Steuerungsmechanismus für die Regeneration von Zebrafischflossen aufgedeckt.

„Zebrafische sind perfekte Modellorganismen für die Regenerationsforschung. Neben Flossen können sie sogar Herz und Gehirn nach Beschädigung in größerem Umfang wieder herstellen“, so der Wissenschaftliche Mitarbeiter Dr. Daniel Wehner. Die Schwanzflossen eignen sich dabei besonders, um die Regeneration von Gewebe zu studieren.

„Sie bestehen aus Knochen, Haut und Nerven, aus Blutgefäßen und anderen Zelltypen, die alle sehr rasch und perfekt miteinander koordiniert regenerieren. Egal wieviel von einer Flosse fehlt, sie wächst immer exakt auf die richtige Größe nach“, erläutert Wehner. Die Ulmer Forscher haben nun herausgefunden, wie die Zellvermehrung und Knochenbildung bei der Flossenneubildung koordiniert wird.

„Für eine kontrollierte Geweberegeneration müssen grundlegende Prozesse wie die Vermehrung und Reifung von Zellen sowie die strukturgebende Gewebebildung präzise gesteuert werden. Das bedarf einer gut abgestimmten Koordination und zentralen Steuerung“, so Weidinger. Hier kommt nun ein bestimmter Signalübertragungsweg ins Spiel, mit dem Zellen miteinander kommunizieren: der Wnt-Signalweg.

Die Ulmer Forscher konnten zeigen, dass Wnt-Signale als Masterregulatoren bei der Flossenregeneration agieren: sie kontrollieren viele andere Signalwege, die die Zellvermehrung und -reifung steuern. Dies geschieht, wie die Wissenschaftler herausgefunden haben, nach ersten Wundheilungsprozessen über die Einrichtung von „Kontrollzentren“ im Keimgewebe. Blastem nennt man diese Organanlage aus teilungsfreudigen, undifferenzierten Vorläuferzellen, aus dem später das neue Organ, in diesem Fall die Flosse, hervorgeht.

„Doch damit sich aus dem Blastem ein reguläres Organ entwickelt, muss die Zellvermehrung, Ausdifferenzierung und Gewebebildung haargenau orchestriert werden“, ergänzt Wehner, der zu diesem Projekt promoviert hat.

Das Blastem besteht aus unterschiedlichen Zonen mit sich schnell- und langsam vermehrenden Zellen sowie aus Bereichen, die für die Knochenbildung und die Entwicklung weiterer Gewebe zuständig sind. Und jeder dieser Teilbereiche wird über ganz spezifische Signale reguliert.

„Nur wenn diese komplexen Prozesse koordiniert ineinander greifen und die Feinabstimmung zwischen den unterschiedlichen Entwicklungsbereichen stimmt, entsteht ein wohlgeformtes und funktionierendes neues Organ“, versichern die Ulmer Regenerationsforscher. Die Biologen konnten experimentell zeigen, dass der Wnt-Signalweg zwei Signalzentren im Blastem etabliert, über die zum einen die Zellvermehrung und zum anderen die Knochenbildung kontrolliert wird. Diese Signalzentren entsenden entsprechende Sekundärsignale, die wiederum die Feinsteuerung der Regenerationsprozesse übernehmen.

Bei dem von der Deutschen Forschungsgemeinschaft (DFG) unterstützten Projekt haben die Ulmer Wissenschaftler eine im Labor von Professor Weidinger entwickelte, neue Technologie eingesetzt, um die gewebespezifische Rolle des Wnt-Signalweges charakterisieren zu können. Sie haben transgene Fischlinien erzeugt, in denen die Forscher Wnt-Signale in bestimmten Zellen an- und ausschalten konnten.

Dass der Wnt-Signalweg eine Rolle in der Flossenregeneration hat, hatte Weidinger schon früher entdeckt. Doch das Forscherteam konnte nun erstmals nachweisen, dass Wnt Signale die gewebsbildenden Prozesse bei der Organregeneration indirekt über die Einrichtung von „Signalzentren“ im Blastem steuern. „Dieser bisher unbekannte Modus der Regenerationskontrolle könnte möglicherweise helfen, die grundlegenden zellulären Prozesse soweit aufzuklären, dass damit auch das relativ eingeschränkte Regenerationspotential beim Menschen langfristig verbessert werden könnte“, meinen die Forscher.

Veröffentlicht wurden die Forschungsergebnisse in Cell Reports, einem sehr renommierten Open Access Fachjournal des gleichnamigen Verlags. Kooperationspartner waren neben Professor Michael Kühl, dem Leiter des Instituts für Biochemie und molekulare Biologie, Wissenschaftler der Universitäten in Padua (Italien) und Utah (USA).

Informationen zur Veröffentlichung:
Wehner et al., Wnt/beta-Catenin Signaling Defines Organizing Centers that Orchestrate Growth and Differentiation of the Regenerating Zebrafish Caudal Fin, Cell Reports (2014), http://dx.doi.org/10.1016/j.celrep.2013.12.036

Weitere Informationen:
Prof. Dr. Gilbert Weidinger; Tel.: 0731 / 500 - 232 90; gilbert.weidinger@uni-ulm.de;
Dr. Daniel Wehner; Tel.: 0731 / 500 - 338 10; daniel.wehner@uni-ulm.de;

Verantwortlich: Andrea Weber-Tuckermann

Weitere Informationen:

http://dx.doi.org/10.1016/j.celrep.2013.12.036

Andrea Weber-Tuckermann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden
06.12.2016 | Universität Osnabrück

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften