Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolution in Echtzeit

06.01.2010
Max-Planck-Forscher messen, wie schnell sich das Erbgut verändert

Mutationen sind das Rohmaterial der Evolution. Schon Charles Darwin hatte erkannt, dass Evolution nur funktionieren kann, wenn es vererbbare Unterschiede zwischen Individuen gibt: Wer besser an die Umwelt angepasst ist, hat größere Chancen, seine Gene weiterzugeben.


Verschiedene Mutanten von Arabidopsis thaliana. Bild: Detlef Weigel

Eine Art kann sich daher nur weiterentwickeln, wenn sich das Erbgut permanent durch neue Mutationen verändert und die jeweils vorteilhaftesten Veränderungen in der Selektion bestehen. Wissenschaftler am Max-Planck-Institut für Entwicklungsbiologie in Tübingen haben nun erstmals direkt die Geschwindigkeit des Mutationsprozesses in Pflanzen gemessen. Ihre Erkenntnisse werfen ein neues Licht auf einen grundlegenden Vorgang der Evolution und erklären zum Beispiel, warum Unkrautvernichtungsmittel oft innerhalb weniger Jahre ihre Wirkung verlieren. (Science, 1. Januar 2010)

"Während die langfristigen Auswirkungen von Erbgutmutationen auf die Evolution gut verstanden sind, war bislang weitgehend unbekannt, wie schnell solche Veränderungen auftreten", erläutert Studienleiter Detlef Weigel, Direktor am Max-Planck-Institut in Tübingen. So ist es gängige Praxis, das Erbgut verwandter Tier- und Pflanzenarten zu vergleichen. Mutationen aber, die in den Jahrmillionen seit der Trennung dieser Arten wieder verlorengegangen sind, bleiben dabei unberücksichtigt. Weigel und seine Mitarbeiter interessierten sich nun dafür, wie die Handschrift der Evolution aussieht, bevor die Selektion eingreift. Hierfür verfolgten sie die genetische Entwicklung von fünf Linien der Ackerschmalwand Arabidopsis thaliana über 30 Generationen hinweg. Im Erbgut der letzten Generation untersuchten sie dann, welche Unterschiede sich im Vergleich mit den Ausgangspflanzen ergeben hatten.

Wie der aufwändige Vergleich des gesamten Genoms ergab, waren in nur wenigen Jahren in jeder der fünf Linien im Durchschnitt 20 einzelne DNA-Bausteine - so genannte Basenpaare - verändert worden. "Die Wahrscheinlichkeit, mit der ein beliebiger Buchstabe des Genoms innerhalb einer Generation verändert wird, liegt demnach bei rund sieben Milliardsteln", rechnet Detlef Weigel vor. Anders ausgedrückt, hat ein Keimling im Durchschnitt knapp eine Neumutation in jeder der beiden Erbgutkopien, die er jeweils von der mütterlichen und väterlichen Seite mitbekommen hat. Diese winzigen Veränderungen im rund 120 Millionen Basenpaare umfassenden Genom von Arabidopsis zu finden, vergleicht Weigel mit der sprichwörtlichen Suche nach der Nadel im Heuhaufen: "Die Mutationen aufzuspüren, war nur mithilfe neuer Methoden möglich, mit denen sich das komplette Erbgut einer Pflanze in kurzer Zeit erfassen lässt". Dennoch war der Aufwand für die Experimente gewaltig: Um echte Neumutationen zuverlässig von Experimentierfehlern unterscheiden zu können, buchstabierten die Wissenschaftler jedes untersuchte Genom 30-mal vollständig durch.

Hohe Variabilität des Genoms

Angesichts der Genomgröße mag die Zahl der Neumutationen zunächst sehr gering erscheinen. Berücksichtigt man jedoch, dass dieser Prozess bei allen Individuen einer Art parallel abläuft, dann erweist sich das genetische Material insgesamt als erstaunlich plastisch: In nur 60 Millionen Arabidopsis-Individuen ist jede Position des Genoms im Durchschnitt einmal mutiert. Für eine Art, die Tausende von Samen in jeder Generation produziert, wahrlich keine große Anzahl von Pflänzchen.

Neben der Geschwindigkeit, mit der Neumutationen auftreten, wirft die Tübinger Studie ein neues Licht auf deren Verteilung im Genom. So stellten die Wissenschaftler fest, dass nicht alle möglichen Mutationsklassen gleichmäßig auftreten. Bei vier verschiedenen Arten von Basenpaaren im Genom gibt es sechs Möglichkeiten der Veränderungen - aber eine dieser sechs ist für die Hälfte aller Mutationen verantwortlich. Auch lässt sich nun genauer kalkulieren, wann sich die Entwicklungslinien verschiedener Arten voneinander getrennt haben - gut möglich daher, dass Stammbäume an neue zeitliche Maßstäbe angepasst werden müssen. Detlef Weigel geht anhand der neuen Daten etwa davon aus, dass Arabidopsis thaliana sich von ihrer Schwesterart Arabidopsis lyrata, die in vielen Merkmalen sehr unterschiedlich ist, nicht wie bisher angenommen erst vor fünf Millionen, sondern bereits vor 20 Millionen Jahren getrennt hat. Entsprechende Untersuchungen an anderen Arten könnten ebenfalls Neujustierungen nötig machen - etwa bei der Frage, zu welchem Zeitpunkt in der Ur- und Frühgeschichte verschiedene Haustiere und Ackerpflanzen domestiziert wurden.

Hohe Mutationsrate fördert Resistenzen gegen Herbizide

Auch für die Pflanzenzüchtung ergeben sich neue und Erfolg versprechende Gedankenexperimente. Bei genügend großen Populationen kann davon ausgegangen werden, dass nahezu jede mögliche Mutation im Verlauf einer oder weniger Generationen realisiert wird. Das bedeutet, dass spontan auftretende Mutationen, die den Ertrag steigern oder Pflanzen gegen Dürre unempfindlich machen, vermutlich gar nicht so selten sind, auch wenn das Auffinden geeigneter Veränderungen immer noch sehr aufwändig bleibt. Auf der anderen Seite treffen Herbizide, die auf große Flächen ausgebracht werden, auf eine umfangreiche Population von Unkräutern. Da deren Erbgut mit großer Wahrscheinlichkeit ähnlich wandlungsfreudig ist wie das der Ackerschmalwand, verwundert es nicht, dass Herbizidresistenzen innerhalb von wenigen Jahren auftauchen. "Dieser Effekt ist auch deshalb besonders deutlich ausgeprägt, weil Herbizide oft nur die Funktion eines einzelnen Gens beeinträchtigen", sagt Detlef Weigel. Ein Ausweg wäre die Suche nach Herbiziden, die auf mehrere Gene wirken.

Die Tübinger Biologen gehen davon aus, dass auch das menschliche Genom einer ähnlich schnellen Veränderung unterworfen ist. "Wenn man unsere Ergebnisse auf den Menschen überträgt, dann finden von einer Generation zur nächsten durchschnittlich 60 Basenaustausche statt", rechnet Weigel vor. Bei mehr als sechs Milliarden Menschen, die derzeit auf der Erde leben, bedeutet das, rein statistisch betrachtet, dass es für jede Stelle des Erbguts Dutzende von Erdbewohnern gibt, bei denen diese Position mutiert ist. "Alles, was genetisch möglich ist, wird demnach innerhalb recht kurzer Zeit durchgetestet", resümiert Detlef Weigel und beschreibt damit einen völlig neuen Blick auf die Evolution, der man sonst eher ein Arbeitstempo zuschreibt, das sich in Jahrtausenden oder gar Jahrmillionen bemisst.

Originalveröffentlichung:

Detlef Weigel, Stephan Ossowski, Korbinian Schneeberger, Norman Warthmann, Richard M. Clark, José Ignacio Lucas-Lledó, Michael Lynch, Ruth G. Shaw
The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana
Science, 1. Januar 2010
Weitere Informationen erhalten Sie von:
Prof. Dr. Detlef Weigel
Max-Planck-Institut für Entwicklungsbiologie, Tübingen
Tel.: +49 (0)179 / 676 9032
E-Mail: detlef.weigel@tuebingen.mpg.de
Dr. Susanne Diederich (Presse- und Öffentlichkeitsabteilung)
Max-Planck-Institut für Entwicklungsbiologie, Tübingen
Tel.: +40 (0)170 / 6304946
E-Mail: presse@tuebingen.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie