Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolution in Echtzeit

06.01.2010
Max-Planck-Forscher messen, wie schnell sich das Erbgut verändert

Mutationen sind das Rohmaterial der Evolution. Schon Charles Darwin hatte erkannt, dass Evolution nur funktionieren kann, wenn es vererbbare Unterschiede zwischen Individuen gibt: Wer besser an die Umwelt angepasst ist, hat größere Chancen, seine Gene weiterzugeben.


Verschiedene Mutanten von Arabidopsis thaliana. Bild: Detlef Weigel

Eine Art kann sich daher nur weiterentwickeln, wenn sich das Erbgut permanent durch neue Mutationen verändert und die jeweils vorteilhaftesten Veränderungen in der Selektion bestehen. Wissenschaftler am Max-Planck-Institut für Entwicklungsbiologie in Tübingen haben nun erstmals direkt die Geschwindigkeit des Mutationsprozesses in Pflanzen gemessen. Ihre Erkenntnisse werfen ein neues Licht auf einen grundlegenden Vorgang der Evolution und erklären zum Beispiel, warum Unkrautvernichtungsmittel oft innerhalb weniger Jahre ihre Wirkung verlieren. (Science, 1. Januar 2010)

"Während die langfristigen Auswirkungen von Erbgutmutationen auf die Evolution gut verstanden sind, war bislang weitgehend unbekannt, wie schnell solche Veränderungen auftreten", erläutert Studienleiter Detlef Weigel, Direktor am Max-Planck-Institut in Tübingen. So ist es gängige Praxis, das Erbgut verwandter Tier- und Pflanzenarten zu vergleichen. Mutationen aber, die in den Jahrmillionen seit der Trennung dieser Arten wieder verlorengegangen sind, bleiben dabei unberücksichtigt. Weigel und seine Mitarbeiter interessierten sich nun dafür, wie die Handschrift der Evolution aussieht, bevor die Selektion eingreift. Hierfür verfolgten sie die genetische Entwicklung von fünf Linien der Ackerschmalwand Arabidopsis thaliana über 30 Generationen hinweg. Im Erbgut der letzten Generation untersuchten sie dann, welche Unterschiede sich im Vergleich mit den Ausgangspflanzen ergeben hatten.

Wie der aufwändige Vergleich des gesamten Genoms ergab, waren in nur wenigen Jahren in jeder der fünf Linien im Durchschnitt 20 einzelne DNA-Bausteine - so genannte Basenpaare - verändert worden. "Die Wahrscheinlichkeit, mit der ein beliebiger Buchstabe des Genoms innerhalb einer Generation verändert wird, liegt demnach bei rund sieben Milliardsteln", rechnet Detlef Weigel vor. Anders ausgedrückt, hat ein Keimling im Durchschnitt knapp eine Neumutation in jeder der beiden Erbgutkopien, die er jeweils von der mütterlichen und väterlichen Seite mitbekommen hat. Diese winzigen Veränderungen im rund 120 Millionen Basenpaare umfassenden Genom von Arabidopsis zu finden, vergleicht Weigel mit der sprichwörtlichen Suche nach der Nadel im Heuhaufen: "Die Mutationen aufzuspüren, war nur mithilfe neuer Methoden möglich, mit denen sich das komplette Erbgut einer Pflanze in kurzer Zeit erfassen lässt". Dennoch war der Aufwand für die Experimente gewaltig: Um echte Neumutationen zuverlässig von Experimentierfehlern unterscheiden zu können, buchstabierten die Wissenschaftler jedes untersuchte Genom 30-mal vollständig durch.

Hohe Variabilität des Genoms

Angesichts der Genomgröße mag die Zahl der Neumutationen zunächst sehr gering erscheinen. Berücksichtigt man jedoch, dass dieser Prozess bei allen Individuen einer Art parallel abläuft, dann erweist sich das genetische Material insgesamt als erstaunlich plastisch: In nur 60 Millionen Arabidopsis-Individuen ist jede Position des Genoms im Durchschnitt einmal mutiert. Für eine Art, die Tausende von Samen in jeder Generation produziert, wahrlich keine große Anzahl von Pflänzchen.

Neben der Geschwindigkeit, mit der Neumutationen auftreten, wirft die Tübinger Studie ein neues Licht auf deren Verteilung im Genom. So stellten die Wissenschaftler fest, dass nicht alle möglichen Mutationsklassen gleichmäßig auftreten. Bei vier verschiedenen Arten von Basenpaaren im Genom gibt es sechs Möglichkeiten der Veränderungen - aber eine dieser sechs ist für die Hälfte aller Mutationen verantwortlich. Auch lässt sich nun genauer kalkulieren, wann sich die Entwicklungslinien verschiedener Arten voneinander getrennt haben - gut möglich daher, dass Stammbäume an neue zeitliche Maßstäbe angepasst werden müssen. Detlef Weigel geht anhand der neuen Daten etwa davon aus, dass Arabidopsis thaliana sich von ihrer Schwesterart Arabidopsis lyrata, die in vielen Merkmalen sehr unterschiedlich ist, nicht wie bisher angenommen erst vor fünf Millionen, sondern bereits vor 20 Millionen Jahren getrennt hat. Entsprechende Untersuchungen an anderen Arten könnten ebenfalls Neujustierungen nötig machen - etwa bei der Frage, zu welchem Zeitpunkt in der Ur- und Frühgeschichte verschiedene Haustiere und Ackerpflanzen domestiziert wurden.

Hohe Mutationsrate fördert Resistenzen gegen Herbizide

Auch für die Pflanzenzüchtung ergeben sich neue und Erfolg versprechende Gedankenexperimente. Bei genügend großen Populationen kann davon ausgegangen werden, dass nahezu jede mögliche Mutation im Verlauf einer oder weniger Generationen realisiert wird. Das bedeutet, dass spontan auftretende Mutationen, die den Ertrag steigern oder Pflanzen gegen Dürre unempfindlich machen, vermutlich gar nicht so selten sind, auch wenn das Auffinden geeigneter Veränderungen immer noch sehr aufwändig bleibt. Auf der anderen Seite treffen Herbizide, die auf große Flächen ausgebracht werden, auf eine umfangreiche Population von Unkräutern. Da deren Erbgut mit großer Wahrscheinlichkeit ähnlich wandlungsfreudig ist wie das der Ackerschmalwand, verwundert es nicht, dass Herbizidresistenzen innerhalb von wenigen Jahren auftauchen. "Dieser Effekt ist auch deshalb besonders deutlich ausgeprägt, weil Herbizide oft nur die Funktion eines einzelnen Gens beeinträchtigen", sagt Detlef Weigel. Ein Ausweg wäre die Suche nach Herbiziden, die auf mehrere Gene wirken.

Die Tübinger Biologen gehen davon aus, dass auch das menschliche Genom einer ähnlich schnellen Veränderung unterworfen ist. "Wenn man unsere Ergebnisse auf den Menschen überträgt, dann finden von einer Generation zur nächsten durchschnittlich 60 Basenaustausche statt", rechnet Weigel vor. Bei mehr als sechs Milliarden Menschen, die derzeit auf der Erde leben, bedeutet das, rein statistisch betrachtet, dass es für jede Stelle des Erbguts Dutzende von Erdbewohnern gibt, bei denen diese Position mutiert ist. "Alles, was genetisch möglich ist, wird demnach innerhalb recht kurzer Zeit durchgetestet", resümiert Detlef Weigel und beschreibt damit einen völlig neuen Blick auf die Evolution, der man sonst eher ein Arbeitstempo zuschreibt, das sich in Jahrtausenden oder gar Jahrmillionen bemisst.

Originalveröffentlichung:

Detlef Weigel, Stephan Ossowski, Korbinian Schneeberger, Norman Warthmann, Richard M. Clark, José Ignacio Lucas-Lledó, Michael Lynch, Ruth G. Shaw
The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana
Science, 1. Januar 2010
Weitere Informationen erhalten Sie von:
Prof. Dr. Detlef Weigel
Max-Planck-Institut für Entwicklungsbiologie, Tübingen
Tel.: +49 (0)179 / 676 9032
E-Mail: detlef.weigel@tuebingen.mpg.de
Dr. Susanne Diederich (Presse- und Öffentlichkeitsabteilung)
Max-Planck-Institut für Entwicklungsbiologie, Tübingen
Tel.: +40 (0)170 / 6304946
E-Mail: presse@tuebingen.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten