Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolution in Echtzeit

06.01.2010
Max-Planck-Forscher messen, wie schnell sich das Erbgut verändert

Mutationen sind das Rohmaterial der Evolution. Schon Charles Darwin hatte erkannt, dass Evolution nur funktionieren kann, wenn es vererbbare Unterschiede zwischen Individuen gibt: Wer besser an die Umwelt angepasst ist, hat größere Chancen, seine Gene weiterzugeben.


Verschiedene Mutanten von Arabidopsis thaliana. Bild: Detlef Weigel

Eine Art kann sich daher nur weiterentwickeln, wenn sich das Erbgut permanent durch neue Mutationen verändert und die jeweils vorteilhaftesten Veränderungen in der Selektion bestehen. Wissenschaftler am Max-Planck-Institut für Entwicklungsbiologie in Tübingen haben nun erstmals direkt die Geschwindigkeit des Mutationsprozesses in Pflanzen gemessen. Ihre Erkenntnisse werfen ein neues Licht auf einen grundlegenden Vorgang der Evolution und erklären zum Beispiel, warum Unkrautvernichtungsmittel oft innerhalb weniger Jahre ihre Wirkung verlieren. (Science, 1. Januar 2010)

"Während die langfristigen Auswirkungen von Erbgutmutationen auf die Evolution gut verstanden sind, war bislang weitgehend unbekannt, wie schnell solche Veränderungen auftreten", erläutert Studienleiter Detlef Weigel, Direktor am Max-Planck-Institut in Tübingen. So ist es gängige Praxis, das Erbgut verwandter Tier- und Pflanzenarten zu vergleichen. Mutationen aber, die in den Jahrmillionen seit der Trennung dieser Arten wieder verlorengegangen sind, bleiben dabei unberücksichtigt. Weigel und seine Mitarbeiter interessierten sich nun dafür, wie die Handschrift der Evolution aussieht, bevor die Selektion eingreift. Hierfür verfolgten sie die genetische Entwicklung von fünf Linien der Ackerschmalwand Arabidopsis thaliana über 30 Generationen hinweg. Im Erbgut der letzten Generation untersuchten sie dann, welche Unterschiede sich im Vergleich mit den Ausgangspflanzen ergeben hatten.

Wie der aufwändige Vergleich des gesamten Genoms ergab, waren in nur wenigen Jahren in jeder der fünf Linien im Durchschnitt 20 einzelne DNA-Bausteine - so genannte Basenpaare - verändert worden. "Die Wahrscheinlichkeit, mit der ein beliebiger Buchstabe des Genoms innerhalb einer Generation verändert wird, liegt demnach bei rund sieben Milliardsteln", rechnet Detlef Weigel vor. Anders ausgedrückt, hat ein Keimling im Durchschnitt knapp eine Neumutation in jeder der beiden Erbgutkopien, die er jeweils von der mütterlichen und väterlichen Seite mitbekommen hat. Diese winzigen Veränderungen im rund 120 Millionen Basenpaare umfassenden Genom von Arabidopsis zu finden, vergleicht Weigel mit der sprichwörtlichen Suche nach der Nadel im Heuhaufen: "Die Mutationen aufzuspüren, war nur mithilfe neuer Methoden möglich, mit denen sich das komplette Erbgut einer Pflanze in kurzer Zeit erfassen lässt". Dennoch war der Aufwand für die Experimente gewaltig: Um echte Neumutationen zuverlässig von Experimentierfehlern unterscheiden zu können, buchstabierten die Wissenschaftler jedes untersuchte Genom 30-mal vollständig durch.

Hohe Variabilität des Genoms

Angesichts der Genomgröße mag die Zahl der Neumutationen zunächst sehr gering erscheinen. Berücksichtigt man jedoch, dass dieser Prozess bei allen Individuen einer Art parallel abläuft, dann erweist sich das genetische Material insgesamt als erstaunlich plastisch: In nur 60 Millionen Arabidopsis-Individuen ist jede Position des Genoms im Durchschnitt einmal mutiert. Für eine Art, die Tausende von Samen in jeder Generation produziert, wahrlich keine große Anzahl von Pflänzchen.

Neben der Geschwindigkeit, mit der Neumutationen auftreten, wirft die Tübinger Studie ein neues Licht auf deren Verteilung im Genom. So stellten die Wissenschaftler fest, dass nicht alle möglichen Mutationsklassen gleichmäßig auftreten. Bei vier verschiedenen Arten von Basenpaaren im Genom gibt es sechs Möglichkeiten der Veränderungen - aber eine dieser sechs ist für die Hälfte aller Mutationen verantwortlich. Auch lässt sich nun genauer kalkulieren, wann sich die Entwicklungslinien verschiedener Arten voneinander getrennt haben - gut möglich daher, dass Stammbäume an neue zeitliche Maßstäbe angepasst werden müssen. Detlef Weigel geht anhand der neuen Daten etwa davon aus, dass Arabidopsis thaliana sich von ihrer Schwesterart Arabidopsis lyrata, die in vielen Merkmalen sehr unterschiedlich ist, nicht wie bisher angenommen erst vor fünf Millionen, sondern bereits vor 20 Millionen Jahren getrennt hat. Entsprechende Untersuchungen an anderen Arten könnten ebenfalls Neujustierungen nötig machen - etwa bei der Frage, zu welchem Zeitpunkt in der Ur- und Frühgeschichte verschiedene Haustiere und Ackerpflanzen domestiziert wurden.

Hohe Mutationsrate fördert Resistenzen gegen Herbizide

Auch für die Pflanzenzüchtung ergeben sich neue und Erfolg versprechende Gedankenexperimente. Bei genügend großen Populationen kann davon ausgegangen werden, dass nahezu jede mögliche Mutation im Verlauf einer oder weniger Generationen realisiert wird. Das bedeutet, dass spontan auftretende Mutationen, die den Ertrag steigern oder Pflanzen gegen Dürre unempfindlich machen, vermutlich gar nicht so selten sind, auch wenn das Auffinden geeigneter Veränderungen immer noch sehr aufwändig bleibt. Auf der anderen Seite treffen Herbizide, die auf große Flächen ausgebracht werden, auf eine umfangreiche Population von Unkräutern. Da deren Erbgut mit großer Wahrscheinlichkeit ähnlich wandlungsfreudig ist wie das der Ackerschmalwand, verwundert es nicht, dass Herbizidresistenzen innerhalb von wenigen Jahren auftauchen. "Dieser Effekt ist auch deshalb besonders deutlich ausgeprägt, weil Herbizide oft nur die Funktion eines einzelnen Gens beeinträchtigen", sagt Detlef Weigel. Ein Ausweg wäre die Suche nach Herbiziden, die auf mehrere Gene wirken.

Die Tübinger Biologen gehen davon aus, dass auch das menschliche Genom einer ähnlich schnellen Veränderung unterworfen ist. "Wenn man unsere Ergebnisse auf den Menschen überträgt, dann finden von einer Generation zur nächsten durchschnittlich 60 Basenaustausche statt", rechnet Weigel vor. Bei mehr als sechs Milliarden Menschen, die derzeit auf der Erde leben, bedeutet das, rein statistisch betrachtet, dass es für jede Stelle des Erbguts Dutzende von Erdbewohnern gibt, bei denen diese Position mutiert ist. "Alles, was genetisch möglich ist, wird demnach innerhalb recht kurzer Zeit durchgetestet", resümiert Detlef Weigel und beschreibt damit einen völlig neuen Blick auf die Evolution, der man sonst eher ein Arbeitstempo zuschreibt, das sich in Jahrtausenden oder gar Jahrmillionen bemisst.

Originalveröffentlichung:

Detlef Weigel, Stephan Ossowski, Korbinian Schneeberger, Norman Warthmann, Richard M. Clark, José Ignacio Lucas-Lledó, Michael Lynch, Ruth G. Shaw
The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana
Science, 1. Januar 2010
Weitere Informationen erhalten Sie von:
Prof. Dr. Detlef Weigel
Max-Planck-Institut für Entwicklungsbiologie, Tübingen
Tel.: +49 (0)179 / 676 9032
E-Mail: detlef.weigel@tuebingen.mpg.de
Dr. Susanne Diederich (Presse- und Öffentlichkeitsabteilung)
Max-Planck-Institut für Entwicklungsbiologie, Tübingen
Tel.: +40 (0)170 / 6304946
E-Mail: presse@tuebingen.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics