Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Epigenetisches Modell für die Entwicklung von Blutzellen

21.11.2016

Mit bioinformatischen Methoden ist es Wissenschaftlern aus Saarbrücken, Cambridge und Wien gelungen, Unterschiede in Blutstammzellen verschiedener Entwicklungsstufen zu finden und die epigenetischen Veränderungen während ihrer Differenzierung zu beschreiben. Dank neuartiger Sequenzierungs-Technologie konnten die Epigenome aus nur wenigen oder sogar einzelnen Zellen kartiert werden. Mittels maschinellem Lernen wurde aus den Ergebnissen ein Modell menschlicher Blutdifferenzierung direkt aus der Methylierung der Zell-DNA gewonnen. Damit steht ein neuer bioinformatischer Ansatz bereit, um komplexe Differenzierungswege im Computer abzubilden.

Das Genom bzw. die DNA-Sequenz ist spezifisch für jeden Organismus und in praktisch allen Zellen eines Menschen gleich. Für die Entwicklung der unter-schiedlichen Zell¬typen mit ihren spezifischen Aufgaben aus Stamm- und Vorläuferzellen ist das Epigenom verantwortlich. Im Epigenom ist reflektiert, zu welchem Zelltyp sich eine Stammzelle entwickelt. Der Mechanismus dafür ist das biochemische An- und Ausschalten von Teilabschnitten der DNA durch zelluläre Prozesse wie zum Beispiel der Methylierung bestimmter DNA-Regionen. Die Kenntnis dieser Steuerung ermöglicht eine verbesserte Analyse und Behandlung von Krebs-, Stoffwechsel- und Immunerkrankungen.


Epigenetische Verpackung der DNA: Die DNA (blau) mit Methylierungen (rot) umwindet Histonproteine.

Unter der Leitung von Christoph Bock (CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften, Wien, und Max-Planck-Institut für Informatik, Saarbrücken), wurden von einem internationalen Team, das Forscher am Max-Planck-Institut für Informatik und am Zentrum für Bioinformatik an der Universität des Saarlandes einschließt, die epigenetischen Muster in Stammzellen und Vorläuferzellen des menschlichen Blutes umfassend charakterisiert. Diese Zellen sind für die Bildung sämtlicher Blutzellen, einschließlich aller Zellen des Immunsystems und der roten Blutkörperchen, verantwortlich.

Eine neuartige Sequenzierungs-Technologie ermöglichte es nun, die Epigenome aus nur wenigen bis hin zu einzelnen Zellen zu kartieren. Im Vergleich zu anderen Verfahren sind die Messungen schärfer und im Falle der sehr seltenen Stammzellen überhaupt erst möglich geworden. Die so entstandenen Karten beschreiben Muster in der DNA-Methylierung, einer speziellen epigenetischen Modifikation, die mit der Verpackung der DNA im Zellkern assoziiert ist und ihre "Lesbarkeit" beeinflusst. Sie stellen eine Art Atlas dieser Modifikation dar, der als Referenz für die epigenetische Untersuchung von Krankheiten wie Leukämie und Autoimmunerkrankungen von Nutzen ist.

"Jede Körperzelle besitzt ihr eigenes Epigenom. Herauszufinden, inwiefern sich die Epigenome verschiedener Zelltypen unterscheiden bzw. ähneln, ist von großer Bedeutung für das Verständnis vieler Erkrankungen", erklärt Thomas Lengauer, Sprecher des Saarbrücker Zentrums für Bioinformatik und Direktor am Max-Planck-Institut für Informatik. "Die Menge an Daten, die hierfür ausgewertet werden, macht bioinformatische Methoden unverzichtbar."

In der Studie verglichen die Forscher Stammzellen aus dem Blut von Erwachsenen und aus anderen Quellen wie dem Nabelschnurblut und dem Knochenmark und stellten Unterschiede fest, die mit der Verpackung der DNA im Zellkern im Zusammenhang stehen und für die Zellfunktion relevant sind. Des Weiteren konnten Muster in der epigenetischen Regulation verschiedener Vorläuferzellen identifiziert werden, die mit Zellen der angeborenen bzw. adaptiven Immunabwehr assoziiert sind. Mit Hilfe bioinformatischer Methoden konnten die Forscher die epigenetischen Gemeinsamkeiten und Unterschiede verschiedener Blutzelltypen aufzeigen. Maschinelle Lernverfahren ermöglichten es die epigenetischen Veränderungen, die sich im Laufe der Entwicklung von Blutzellen ereignen, im Computer abzubilden.

Christoph Bock erklärt dazu: "Vorläuferzellen spezialisieren sich während der Entwicklung immer mehr bis zur fertig ausdifferenzierten Blutzelle. Wir fanden in den Vorläuferzellen DNA-Methylierungsmuster, die sich wie eine Straßenkarte lesen und die möglichen Entwicklungs-Routen dieser Zelle beschreiben."

Krankheiten, die nicht durch äußere Erreger verursacht werden, sondern durch Veränderung der körpereigenen Zellen, können nicht mit Antibiotika oder Seren behandelt werden. Stattdessen sind Eingriffe in Entwicklung und Stoffwechsel der Zellen nötig. Thomas Lengauer beschreibt eine Zielrichtung der Forscher "Aus der Kenntnis der Abläufe bei der Zelldifferenzierung erhoffen wir uns bessere Diagnose- und Therapiemöglichkeiten bei Erkrankungen, die im Zusammenhang mit der Teilung von Körperzellen stehen. Sind die epigenomischen Merkmale einer krankhaften Zellveränderung bekannt, kann man nach gezielten Eingriffen forschen, die nur diese Zellen betreffen."

Die Resultate der Wissenschaftler wurden im renommierten Journal Cell Stem Cell veröffentlicht und sind unter http://dx.doi.org/10.1016/j.stem.2016.10.019 abrufbar.

Die Forschung wurde im Rahmen des BLUEPRINT Projektes (BLUEPRINT - A BLUEPRINT of Haematopoietic Epigenomes) durchgeführt, ein groß angelegtes Forschungsprojekt, das als eines der beiden ersten sogenannten "high impact research initiatives" knapp 30 Millionen Euro Förderung der EU erhalten hat. 42 führende Universitäten, Forschungsinstitute und Industriepartner aus 12 Ländern haben zu dem Projekt beigetragen.
http://www.blueprint-epigenome.eu

Unter dem Schirmprojekt IHEC, des International Human Epigenome Consortiums, werden alle Epigenom-Daten von BLUEPRINT öffentlich zugänglich gemacht. IHEC ist ein globales Konsortium mit dem primären Ziel, Referenz-Epigenome für normale und erkrankte Zelltypen des Menschen zu erzeugen und der wissenschaftlichen Gemeinschaft frei zur Verfügung zu stellen. IHEC-Mitglieder unterstützen außerdem Projekte zur Entwicklung neuer Epigenom-Technologien, zur Erforschung von epigenetischer Regulation bei Krankheiten und zum Verständnis der Epigenetik im Bereich der Gen-Umwelt-Interaktionen.
http://ihec-epigenomes.org

Fragen beantworten:
Prof. Dr. Dr. Thomas Lengauer
Max-Planck-Institut für Informatik
Tel: +49.681.9325-3000
lengauer@mpi-inf.mpg.de

Dr. Christoph Bock
CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences
Tel: +43-140-160-70070
cbock@cemm.oeaw.ac.at

Bertram Somieski | Max-Planck-Institut für Informatik
Weitere Informationen:
http://www.mpi-inf.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics