Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Enzyme als Kanalbauer

11.09.2012
Erzeugung nano- und mikroskaliger Oberflächentopographien durch enzymatisches Ätzen

In lebenden Systemen beeinflussen komplexe nano- und mikroskopische Strukturen eine Vielzahl von physikalischen und biologischen Funktionen. Während zweidimensionale Muster beispielsweise mit mikrolithographischen Verfahren recht gut nachzuahmen sind, stellen dreidimensionale Strukturen eine große Herausforderung dar.



Amerikanische Forscher berichten jetzt in der Zeitschrift Angewandte Chemie von einer neuen Methode zum lithographiefreien Ätzen komplexer Oberflächen mit bioabbaubaren Polymeren und Enzymen. Ausgehend von strukturierten Mikrokanälen konstruierten sie eine Baueinheit für die Isolierung und Anreicherung von Zellen aus Vollblut.

Das Team um Victor M. Ugaz an der Texas A&M University verwendet Proteinase K (PK), ein proteinspaltendes Enzym, das auch den Bio-Kunststoff Polymilchsäure abbauen kann. Auf einen kleinen Block aus Polymilchsäure tragen die Forscher zunächst eine Maske auf, die nur eine schmale Spur freilässt. In diesen Mikrokanal wird eine Flüssigkeit mit PK geleitet. Überall, wo das Enzym mit der Polymilchsäure in Berührung kommt, wird diese „weggeätzt“.

In Mikrokanälen können Flüssigkeiten nebeneinander strömen, ohne sich merklich zu mischen. Dies nutzen die Wissenschaftler zur Herstellung strukturierter Kanälchen. Sie führen rechts und links PK-Lösung durch den Mikrokanal, mittig hemmt eine Proteinlösung den Ätzprozess. Auf diese Weise werden zwei benachbarte Kanälchen in das Polymer geätzt, die durch ein feines „Wehr“ getrennt sind. Im nächsten Schritt wird Proteinlösung sowohl durch einen der geätzten Kanäle als auch über das mittige Wehr geführt, während der zweite Kanal wiederum PK ausgesetzt wird. Damit bleibt der eine Kanal flach, der zweite wird tiefer geätzt. Zum Schluss werden alle drei Spuren mit PKA weiter vertieft. Das Wehr liegt damit niedriger als die „Ufer“ des Doppelkanals.

Ein solcher Doppelkanal wird in Form einer Haarnadelkurve geführt und oben verschlossen. Die Forscher ließen mit Tumorzellen versetztes Blut durch den inneren, flacheren Kanal, Pufferlösung durch den äußeren, tieferen strömen. Fliehkräfte drücken in der Kurve Blutzellen in die äußere Rinne mit dem Puffer. Durch den engen Spalt zwischen Abdeckung und Wehr passen jedoch nur kleine Blutzellen. Die größeren Tumorzellen passen nicht durch und werden im inneren Kanal angereichert, störende rote Blutkörperchen abgereichert. Die unterschiedliche Tiefe beider Kanälchen unterstützt diesen Prozess. Seltene Zellen wie frei zirkulierende Tumorzellen lassen sich auf diese Weise wesentlich rascher und einfacher in Blutproben nachweisen als mit herkömmlichen Methoden, wie der Membranfiltration.

Durch spezielle thermische Vorbehandlung können gezielt kristalline Bereiche in Polymilchsäure erzeugt werden, die von PK nur schlecht abgebaut werden. Auf diese Weise lassen sich Kanälchen mit definierten kleinen Hindernissen erzeugen, die z.B. für Filtrations- oder Chromatographiesysteme geeignet sind.

Angewandte Chemie: Presseinfo 35/2012

Autor: Victor M. Ugaz, Texas A&M University, College Station (USA), http://www.che.tamu.edu/people/faculty/info?fid=11

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201204600

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics