Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Darm der Venus-Fliegenfalle: Neues zur Verdauung

02.09.2013
Kleine Tiere fangen und verdauen – das schafft die Venus-Fliegenfalle mit ihren hoch spezialisierten Blättern. Den lebenswichtigen Stickstoff aus der Beute holt sich die Pflanze mit einem bislang unbekannten Mechanismus. Forscher aus Würzburg, Freiburg und Göttingen haben ihn entdeckt.

Stickstoff ist für Pflanzen ein Hauptnährstoff. In der Regel ziehen sie ihn in Form von Nitrat und Ammonium aus dem Boden, transportieren ihn in Wurzeln und Blätter und nutzen ihn dann zur Produktion von Proteinen.


Die fleischfressende Venus-Fliegenfalle beißt mit ihren tellerfallenartig geformten Blättern zu. Dabei wird der Mund erst zum „grünen Magen“ und dann zum Darm. Bild: Christian Wiese


Im Querschnitt durch die grüne Magen-/Darmwand der Venus-Fliegenfalle erkennt man die Drüsen (rot), die den sauren Cocktail von Verdauungsenzymen abgeben und dann die freigesetzten Nährstoffe aufnehmen. Bild: Maria Escalante Perez

Was aber, wenn der Boden wenig oder keinen Stickstoff hergibt? An solche nährstoffarmen Standorte hat sich die fleischfressende Venus-Fliegenfalle (Dionaea muscipula) angepasst, die in einigen Moorgebieten Nordamerikas zu Hause ist. Dort kann sie nur überleben, weil sie sich auf Tiere als Zusatznahrung spezialisiert hat.

So erlegt Dionaea ihre Beute

Ihre Beute schnappt sich Dionaea mit Blättern, die zu Klappfallen umgebildet sind: Berühren Insekten spezielle Sinneshaare auf der Fallenoberfläche, werden elektrische Impulse ausgelöst und die Falle klappt blitzschnell zu.

Die Gefangenen versuchen natürlich, sich zu befreien. Doch je heftiger sie sich wehren, umso häufiger berühren sie die Sinneshaare. Das wiederum bewirkt eine ganze Flut elektrischer Impulse sowie die Produktion des Lipidhormons. Dieses aktiviert die zahlreichen Drüsen, die dicht an dicht im Inneren der Falle sitzen: Sie fluten den „grünen Magen“ mit einem sauren Saft, der über 50 verschiedene Verdauungsenzyme enthält.

Wie die Verdauung genau vor sich geht, beschreibt ein Team um den Würzburger Biophysiker Rainer Hedrich in der Zeitschrift „Current Biology“. Demnach arbeitet die Falle der Pflanze als Mund, Magen und Darm zugleich: „Die Drüsen, die erst den enzymreichen sauren Magensaft absondern, nehmen später auch die nährstoffreichen Fleischbestandteile auf“, erklärt Hedrich. „Ist der Magen leer, öffnet sich der Mund, um bei der nächsten Gelegenheit wieder zuzubeißen.“

Wie der Stickstoff erschlossen wird

Die Forscher haben den Mageninhalt der Venus-Fliegenfalle analysiert und herausgefunden: Das Fleisch der Beutetiere wird in seine Eiweißbestandteile, die Aminosäuren, zerlegt. Dabei fiel ihnen auf, dass die Aminosäure Glutamin fehlt, dafür aber das stickstoffhaltige Nährsalz Ammonium auftaucht. Der Grund: „Die Pflanze hat in ihrem Magensaft ein Enzym, das Glutamin zu Glutamat und Ammonium spaltet. Letzteres wird dann von den Drüsen aufgenommen, die zuvor das Verdauungssekret ausgeschüttet haben“, sagt Hedrich.

Dass Pflanzen über diesen Weg Ammonium aus tierischem Eiweiß erschließen können, war bislang unbekannt. An der Entdeckung haben neben Hedrichs Team Heinz Rennenberg von der Universität Freiburg – ein Experte für Stickstoffernährung und Stoffwechsel – sowie Erwin Neher mitgewirkt. Der Göttinger Nobelpreisträger ist Experte für Sekretionsvorgänge.

Was das Lipidhormon bewirkt

Die Forscher haben bei ihren Experimenten noch mehr Neuigkeiten herausgefunden: Wenn eine Falle der fleischfressenden Pflanze keine Beute erlegt und zerlegt hat, funktioniert ihr „Darm“ nicht: In diesem Fall kann sie Ammonium nicht effizient aufnehmen.

Das ändert sich aber, wenn die Falle vorher mit Lipidhormon behandelt wird. „Das Hormon sorgt dafür, dass die Drüsenzellen mit einem Ammonium-Transporter bestückt werden, der das begehrte stickstoffhaltige Molekül in die Pflanze hinein verfrachtet“, so Hedrich. Auch das hierfür verantwortliche Gen haben die Wissenschaftler identifiziert und DmAMT1 genannt (Dionaea-muscipula-Ammonium-Transporter1).

So machen die Forscher weiter

Neben Stickstoff brauchen alle Lebewesen noch viele andere Hauptnährstoffe und Spurenelemente. Wie also zieht die Venus-Fliegenfalle beispielsweise Schwefel und Phosphor aus ihrer Beute? Und in welcher Form nimmt sie diese Nährelemente auf? Wie erkennt die Pflanze, wie voll ihr Magen gerade ist? Investiert sie die Nahrung aus den Beutetieren in neue Fangorgane oder auch in die Produktion neuer Wurzeln? Und was passiert, wenn die Wurzel auf Nahrung trifft? Diese Fragen wollen die Wissenschaftler als nächstes beantworten.

Für dieses Projekt hat Rainer Hedrich 2010 einen Europäischen Forschungspreis erhalten, den mit 2,5 Millionen Euro dotierten ERC Advanced Grant. Untersucht werden die Sinneswahrnehmung, das Fangverhalten und die Verwertung der Beutetiere bei der Venus-Fliegenfalle. Auch ihr Erbgut soll entschlüsselt werden, um die molekularen Prinzipien der Fleischernährung bei Pflanzen aufzuklären.

Scherzer et al., The Dionaea muscipula Ammonium Channel DmAMT1 Provides NH4+ Uptake Associated with Venus Flytrap’s Prey Digestion, Current Biology (2013), http://dx.doi.org/10.1016/j.cub.2013.07.028

Kontakt

Prof. Dr. Rainer Hedrich, Julius-von-Sachs-Institut für Biowissenschaften der Universität Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung
26.04.2017 | Universität Ulm

nachricht Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt
26.04.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie