Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Big Brother für Einzelzellen

15.12.2008
Auch Zellen sind Individuen. Wahrscheinlich jedenfalls, denn eindeutig beweisen ließ sich das bisher noch nicht.

Einzeln waren die kleinsten Lebensbausteine nämlich nur schwer zu erwischen, darum waren Aussagen über die Funktionsweise von Zellen rein statistischer Natur. Wissenschaftler vom ISAS - Institute for Analytical Sciences und von der Technischen Universität Dortmund haben jetzt einen Mikrochip entwickelt, mit dem sich erstmals einzelne Zellen nicht nur isolieren, sondern auch über einen längeren Zeitraum beobachten lassen.

In Hendrik Kortmanns Einkaufskorb war in den letzten zwei Jahren häufig Backhefe zu finden. Nicht weil der 29-jährige Dortmunder so gerne Christstollen isst, sondern weil die Backzutat praktischerweise aus "Versuchskaninchen" für seine Forschung besteht: Hefezellen dienen in der Biologie als Modellorganismen für die verschiedensten Untersuchungen. Kortmann ist Doktorand am Institute for Analytical Sciences (ISAS) und hat den "Big Brother" für Zellen im Rahmen seiner Dissertation mitentwickelt.

Unter dem Mikroskop lassen sich schon jetzt einzelne Zellen sichtbar machen, allerdings nützt das nicht viel, denn sie sehen alle gleich aus. "Aber das tun eineiige Zwillinge im Prinzip auch und doch reagieren sie in der gleichen Situation nicht immer gleich", erläutert Kortmann. "Wir möchten wissen, ob das bei Zellen genau so ist." Dazu reicht es nicht, Momentaufnahmen per Mikroskop zu machen. Die einzelnen Zellen müssen über eine gewisse Zeit am Leben erhalten werden, um ihre Reaktionen auf bestimmte Ereignisse beobachten zu können. Die Apparatur dafür hat der Biotechnologe auf einem Mikrochip installiert. Ein elektromagnetisches Feld fängt die Zelle ein und sorgt dafür, dass sie nicht entwischen kann. Damit sie sich in ihrem Gefängnis auch wohlfühlt, sorgt ein ausgeklügelter Heizmechanismus für konstante Temperaturen. Zum dem von Kortmann entwickelten Minilabor gehört darüber hinaus noch eine geeignete Trägerlösung, die die Zelle am Leben erhalten muss, aber die Temperatur so wenig wie möglich beeinflussen darf.

"Eine solche Technologie zur gezielten Einzelzell-Untersuchung hat es noch nie gegeben", erklärt Andreas Schmid, Professor am ISAS und Kortmanns Doktorvater. "Nach der Veröffentlichung in wissenschaftlichen Fachzeitschriften sind wir damit weltweit auf großes Interesse gestoßen", so der Biochemiker. Schmid hat das Projekt zur Einzelzell-Analyse auf den Weg gebracht und sieht vielfältige Verwendungssmöglichkeiten, sowohl in der Grundlagen- als auch in der anwendungsorientierten Forschung. Bisher beruhten biologische Erkenntnisse auf Untersuchungen von Zellkulturen, die aus bis zu Milliarden Zellen bestehen - die Ergebnisse bestanden aus reiner Statistik. Mit der neuen Technologie lässt sich jedoch messen, ob einzelne Zellen resistent auf pharmazeutische Wirkstoffe reagieren und andere nicht. Oder ob es Zellen mit bestimmten Eigenschaften gibt, die - als Mini-Reaktoren - zukünftige Biokraftstoffe wie Ethanol oder Butanol effektiver als andere erzeugen können. "Und vom ganz Kleinen lässt sich ja manchmal auch auf das ganz Große schließen", ergänzt Schmid, "wenn wir einzelne Zellen als die winzigsten Bausteine des Lebens individuell untersuchen können, entdecken wir vielleicht auch einen Grund für unsere eigene Individualität."

Hintergrundinfos:
Das Projekt wurde finanziert vom Pakt für Forschung und Innovation, dem gemeinsamen Förderungsprogramm von Bund und Ländern.

Ein besonders großes Anwendungspotential der neuen Technologie liegt vermutlich auch im Bereich der synthetischen Biologie.

Bewegte Bilder: Vom Einfangen der Hefezellen und deren Vermehrung auf dem Chip gibt es Videomitschnitte

Beteiligt am Projekt:
Prof. Dr. Andreas Schmid (ISAS, TU Dortmund): Koordinator
Dr.-Ing. Lars Blank (TU Dortmund): Gruppenleiter
Dipl.-Biotech. Hendrik Kortmann (ISAS): Dissertation, Durchführung der Versuche
Prof. Dr.-Ing. Eugeny Kenig (TU Dortmund, jetzt Uni Paderborn): Gruppenleiter Computersimulationen
Dipl.-Ing. Paris Chasanis (TU Dortmund, jetzt Uni Paderborn): Computersimulationen des Chips

PD Dr. Joachim Franzke (ISAS): Mitentwicklung der Temperierung

Publikationen:
o Kortmann H., Chasanis P., Blank L. M., Franzke J., Kenig E. Y. and Schmid A. (2008)
The envirostat - A new bioreactor concept.
Lab-on-a-Chip
DOI 10.1039/b809150a
o Kortmann H., Blank L. M. and Schmid A. (2008)
Single cell analysis reveals unexpected growth phenotype of S. cerevisiae.
Cytometry: Part A
10.1002/cyto.a.20684

Uta Deinet | idw
Weitere Informationen:
http://www.isas.de
http://www.rsc.org/Publishing/Journals/LC/article.asp?doi=b809150a
http://www3.interscience.wiley.com/journal/121543287/abstract

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscherteam der Universität Bremen untersucht Korallenbleiche
24.04.2017 | Universität Bremen

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung