Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stickstoffmonoxid geht im Körper andere Wege als bislang vermutet

04.04.2002


Forschungen in Gießen, Würzburg und San Diego zeigen das - Publikation in "Nature Cell Biology" im April

Das Gas Stickstoffmonoxid (NO) hat im Körper des Menschen an vielen Stellen wichtige Funktionen: Es entspannt die glatte Muskulatur, erweitert die Blutgefäße oder wirkt der Entstehung von Blutgerinnseln entgegen. Für die Entdeckung der Bedeutung von NO im Herz-Kreislaufsystem wurde 1998 der Medizin-Nobelpreis verliehen. Die bislang verbreitete Vorstellung über die Arbeitsweise dieses Botenstoffs muss nun ergänzt werden. Das haben Wissenschaftler der Universitäten Gießen und Würzburg herausgefunden. Ihre Ergebnisse stellen sie in der Zeitschrift "Nature Cell Biology" im April vor.

Es ist nicht verwunderlich, dass Forscher genau wissen wollen, wie NO im Körper wirkt schließlich kommt dieses Gas für die Behandlung von Krankheiten in Betracht. Ein Beispiel: Ein Herzpatient bekämpft seine Angina pectoris mit einem "Nitrospray". Aus diesem Mittel wird in seinem Körper NO freigesetzt. Die Herzkranzgefäße erweitern sich, das Engegefühl in der Brust verschwindet. Die Forschung kann umso gezielter Medikamente entwickeln, je besser sie die Abläufe im Organismus kennt.

Was das Stickstoffmonoxid betrifft, so herrschte bisher folgende Überzeugung vor: NO wird auch vom Körper selbst gebildet und kann - als Gas - problemlos durch die Zellmembranen hindurchtreten, um im Inneren der Zellen seinen Wirkort zu erreichen. Dieser wird aktiviert und erhöht darauf hin die Konzentration eines zweiten Botenstoffes (cGMP) der Zelle. Dadurch werden Prozesse angestoßen, die letztlich für die spezifische Wirkung von NO verantwortlich sind.

Allerdings gab es bereits Hinweise darauf, dass dieses klassische Konzept nicht ganz richtig sein kann, etwa die Tatsache, dass Stickstoffmonoxid in einer Zellmembran besser löslich ist als im Zellinneren. Auch theoretische Überlegungen sprachen eigentlich gegen eine Diffusion von NO durch mehrere Zellschichten, wie dies aber beispielsweise für eine Blutgefäßwand notwendig sein müsste. Darum beschlossen Prof. Dr. Harald Schmidt, Rudolf-Buchheim-Institut für Pharmakologie der Justus-Liebig-Universität Gießen, und seine Arbeitsgruppe in Gießen und Würzburg zusammen mit Kollegen aus San Diego, das Konzept der Wirkungsweise von NO zu überprüfen.

Die Forschergruppen fanden heraus, dass der NO-Rezeptor, die lösliche Guanylylcyclase (sGC), keineswegs ein rein lösliches Protein ist, wie man seit mehr als 20 Jahren meinte. Stattdessen ist der Rezeptor in vielen Zellverbänden von Mensch und Tier - etwa in der Blutgefäßwand, im Herzmuskel und in Blutplättchen - zumindest teilweise mit der Zellmembran verbunden. Dort befindet er sich in unmittelbarer Nachbarschaft zu den Enzymen, die NO produzieren. Diese räumliche Nähe ist sinnvoll, weil NO instabil ist und auf diese Weise schnell sein Ziel erreicht.

Außerdem fanden die Forscher heraus, dass der mit einer Membran verknüpfte Rezeptor viel empfindlicher auf NO reagiert als der lösliche Rezeptor und die Anbindung an die Zellmembran reguliert wird. Die Arbeiten werden im Rahmen des Gießener Sonderforschungsbereichs "Kardiopulmonales Gefäßsystem" (SFB 547, Sprecher: Prof. Dr. Werner Seeger) gefördert, dessen stellvertretender Sprecher Prof. Harald Schmidt ist.

Der Artikel "Calcium-dependent membrane association sensitizes soluble guanylyl cyclase to nitric oxide" von Ulrike Zabel, Christoph Kleinschnitz, Oh Phil, Pavel Nedvedsky, Albert Smolenski, Helmut Müller, Petra Kronich, Peter Kugler, Ulrich Walter, Jan E. Schnitzer und Harald H. H. W. Schmidt, wurde in der Online-Version von "Nature Cell Biology" vorab bereits im März 2002 publiziert. In gedruckter Form wird er jetzt im April erscheinen.

Kontaktadresse:

Prof. Dr. Harald Schmidt
Rudolf-Buchheim-Institut für Pharmakologie
Frankfurter Str. 107
35392 Gießen
Tel.: 0641/99-47600
Fax: 0641/99-47619
E-Mail: harald.schmidt@pharma.med.uni-giessen.de

Christel Lauterbach | idw
Weitere Informationen:
http://www.med.uni-giessen.de/rbi/

Weitere Berichte zu: Cell Rezeptor Stickstoffmonoxid Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik