Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erforscherin des weißen Lichts

09.05.2007
Prof. Luisa De Cola entwickelt neuartige Dioden und Nanopartikel für diagnostische Zwecke

Die Photosynthese ist die ökologisch bedeutendste photochemische Reaktion auf unserem Planeten. Sie liefert Pflanzen die zum Wachsen benötigte Stoffwechselenergie, indem sie Sonnenlicht in chemische Energie umwandelt.

Durch Lichteinstrahlung auf Bestandteile des Blattgrüns werden Elektronen in einen energiereichen, angeregten Zustand versetzt und können so durch eine Kaskade von Reaktionen Energie für den pflanzlichen Stoffwechsel erzeugen. Denselben photochemischen Prinzipien, wenn auch auf grundlegend andere Zielsetzungen ausgelegt, gehorchen die Systeme, die Prof. Dr. Luisa De Cola in ihrer Arbeitsgruppe am Zentrum für Nanotechnologie (CeNTech) erforscht.

De Cola, eine in Bologna ausgebildete Chemikerin, zog Mitte 2005 aus Amsterdam in das CeNTech und übernahm einen Lehrstuhl für Physikalische Photochemie und Photonische Materialien am Physikalischen Institut der Universität Münster. Ihr Forschungsfeld bietet die ideale Vorraussetzung für eine fächerübergreifende Zusammenarbeit. Die Grundlagen der Photonik, das heißt, der Erzeugung, Messung oder Nutzbarmachung von Licht, sind physikalischer Natur, die Synthese der Moleküle und Materialien, mit denen die Untersuchungen durchgeführt werden, ist eine rein chemische Aufgabenstellung, wohingegen die Anwendung der erforschten Grundlagen in Bereichen der Biomedizin und der Elektrotechnik liegen.

Bei der Synthese ihrer Materialien setzt sie auf die molekulare Selbstanordnung einzelner Komponenten zu komplexen Systemen nach Prinzipien der Supramolekularen Chemie. "Alle anderen Ansätze, bei denen die Bausteine Schritt für Schritt zusammengefügt werden müssen, sind viel zu zeit- und kostenaufwändig", so De Cola. Gerade in den Materialwissenschaften geht der Trend zu immer komplexeren molekularen Systemen, die nicht nur im Labormaßstab, sondern auch industriell wirtschaftlich produzierbar sein müssen. "Die Supramolekulare Chemie ist ein Werkzeug, mit dem sich solche Strukturen selbstständig aus ihren einzelnen Bausteinen aufbauen lassen."

Ein konkretes materialwissenschaftliches Vorhaben ist beispielsweise die Entwicklung von Materialien für lichtemittierende Dioden (LEDs), die weißes Licht erzeugen und somit potenziell herkömmliche Glühbirnen ersetzen könnten.

Eine handelsübliche Glühbirne mit Wolframdraht vergeudet über 90 Prozent der Stromenergie durch Produktion von Hitze. Leuchtdioden hingegen sind keine Temperaturstrahler; in ihrem photonisch aktiven Material werden Elektronen durch fließenden Strom in einen angeregten Zustand versetzt. Fallen diese Elektronen wieder in ihren energiearmen Ausgangszustand zurück, so resultiert dies in der Emission von Licht spezifischer Wellenlänge. Prinzipiell läuft hier genau der umgekehrte Prozess der Photosynthese ab: Aus Stromenergie wird durch Anregung photonischen Materials Licht erzeugt, man spricht dabei auch von Elektrolumineszenz.

Jedes Diodenmaterial kann nur Licht einer bestimmten Wellenlänge und Farbe erzeugen, weißes Licht jedoch entsteht aus einer Überlagerung einer Vielzahl von Farben und enthält ein breites Spektrum an Wellenlängen. De Colas Mitarbeiter haben daher ein komplexes Molekül mit einem Iridiumkern synthetisiert, welches durch geringfügige Veränderungen in der chemischen Zusammensetzung jeweils in orangenem, grünen oder blauen Licht leuchtet. Die richtige Kombination dieser drei Komponenten liefert weißes Licht.

Ein weiterer Forschungsschwerpunkt besteht in der Herstellung und Verwendung von biokompatiblen Nanopartikeln zur in-vivo-Bildgebung und für diagnostische Zwecke in der Medizin. Der Hauptbestandteil dieser Nanopartikel sind Zeolithe, kristalline anorganische Feststoffe aus Silizium- und Aluminiumoxiden, den Hauptbestandteilen von gewöhnlichem Glas. Einen Zeolith-Kristall kann man sich wie ein Bündel mehrerer paralleler Strohhalme vorstellen, nur dass diese auf eine Länge von etwa 30 Nanometern gekürzt wurden. Ein solches Teilchen verfügt über mehrere, in dieselbe Richtung verlaufende Kanäle mit jeweils einer Öffnung zu jeder Seite.

So wie man ein Knicklicht in einen der gebündelten Strohhalme schieben kann, können lumineszierende Farbstoffe durch diese Öffnungen in die kanalförmigen Hohlräume eingebracht werden, wo sie vor "lichtlöschenden" Molekülen, wie zum Beispiel Sauerstoff, geschützt sind. Dadurch wird die Lebensdauer der eingeschlossenen Markierungssubstanzen erhöht. Auch können die Zeolite als Basis für bessere Kontrastmittel bei der Kernspintomographie genutzt werden. Aufgrund der winzigen Größe und der chemischen Resistenz der Nanopartikel erhoffen sich die Forscher, dass es bei einer Injektion in lebendes Gewebe zu keiner körperlichen Abwehrreaktion kommt.

Brigitte Nussbaum | idw
Weitere Informationen:
http://www.uni-muenster.de/Physik.PI/DeCola/

Weitere Berichte zu: Elektron Molekül Nanopartikel Wellenlänge

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften