Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanopartikel für die Medizin

27.02.2007
Physikochemiker der Universität Jena an europäischem Netzwerk NASCENT beteiligt

Wissenschaftler der Universität Jena beteiligen sich jetzt bei der Entwicklung fluoreszierender Nanopartikel an dem europäischen Netzwerk NASCENT (Nanomaterialien für den Einsatz in Sensoren, Katalysatoren und neuen Technologien). Ziel ist die Entwicklung von fluoreszierenden Nanopartikeln, mit denen lebende Zellen untersucht und analysiert werden können, sagt der Jenaer Projektleiter PD Dr. Gerhard Mohr. Schwerpunkt des Netzwerkes, an dem sich acht europäische Forschungseinrichtungen und drei Partner aus der Industrie beteiligen, ist darüber hinaus die Ausbildung von Studenten und Graduierten.

So lernen Studenten aus Portugal, Polen, Deutschland und Frankreich in Jena die Entwicklung neuer Sensor-Nanopartikel und damit Verfahrenstechniken, die heute in der Industrie von hoher Relevanz sind. Außerdem wird die Laufbahn der Studenten mit Hilfe eines persönlich angepassten Karriereplanes (Carrer Development Plan) begleitet.

"Wir wollen nicht nur faszinierende Materialien entwickeln, die in der Krebsforschung eingesetzt werden können", sagt Dr. Mohr. "Ein weiteres Ziel ist, hochqualifizierte Wissenschaftler international vernetzt auszubilden, so wie es in den Exzellenzclustern und Graduiertenschulen der Deutschen Forschungsgemeinschaft geplant ist", erläutert der Physikochemiker. Für NASCENT stellt die Europäische Union in den kommenden vier Jahren insgesamt knapp 2,72 Millionen Euro zur Verfügung, von denen die Friedrich-Schiller-Universität 264.000 Euro erhält. Damit können die Doktoranden und Postdocs zeitlich versetzt an den beteiligten wissenschaftlichen Einrichtungen lernen und sich die dort jeweils vorhandenen Exzellenzen aneignen. Durch die Arbeit bei den Industriepartnern haben sie zudem die Möglichkeit, sich mit der Anwendung der Forschungsergebnisse in der industriellen Fertigung bis hin zu patentrechtlichen Fragen zu befassen. Beteiligt sind neben der Universität Jena Hochschulen aus Großbritannien, Frankreich, Italien, Polen, Spanien, Israel und Ungarn sowie die Unternehmen Kodak, PolyIntell aus Frankreich und das Erfurter Institut für Mikrosensorik (CiS).

Mit fluoreszierenden Nanopartikeln kann man lebende Zellen untersuchen und zum Beispiel Glucosekonzentration, pH-Wert und Sauerstoffgehalt feststellen, erklärt Dr. Mohr. Das sei wichtig, wenn man neue Medikamente entwickeln oder biologische Prozesse in der Zelle untersuchen möchte. Für die Analyse von Substanzen setzen Wissenschaftler schon seit langem Farbstoffe zur Markierung ein. Soll jedoch untersucht werden, ob bestimmte Substanzen in Zellen oder Gewebe vorkommen und wie sie sich dort verhalten, genügen die herkömmlichen Farbstoffe nicht mehr. Sie reagieren zu stark mit Bestandteilen der Zellen oder reichern sich dort an.

Um das zu vermeiden, werden die Indikatorfarbstoffe in Nanopartikel eingebettet und polymerisiert. Die Größe der Nanopartikel richtet sich dabei nach dem Verwendungszweck. Für Gewebe sind sie zwischen 300 und 600 Nanometer groß, für die Injektion in lebende Zellen nur zwischen 40 und 300 Nanometer. "40 Nanometer sind im Vergleich zu einem Meter so klein, wie ein Fußball neben der Erde", verdeutlicht Dr. Mohr. Zudem wird angestrebt, verschiedene Farbstoffe in einem Nanopartikel unterzubringen. Damit könnten in einem Durchgang unterschiedliche Substanzen und ihr Verhalten in der Zelle oder im Gewebe untersucht werden.

Die Nanopartikel sollen dabei nicht etwa einem Menschen oder Tier injiziert werden, betont Dr. Mohr. Vielmehr gehe es um die Analyse in der medizinischen Forschung oder in der Pharmakologie, wo zum Beispiel die Wirkung eines Medikaments in einzelnen Zellen untersucht wird. So könnte analysiert werden, wie der Wirkstoff in die Zelle hineinkommt, sich anreichert und wieder abbaut, in welcher Konzentration er in der Zelle vorliegt oder ob er überhaupt eine Reaktion verursacht. Auf diese Weise lassen sich die in den Zellen ablaufenden Prozesse besser und schneller analysieren. Denkbar wäre auch, so der Forscher von der Universität Jena, Sensoren zu entwickeln, die mit Hilfe der Nanopartikel bei der Lebensmittelkontrolle oder bei der Erkennung von Kampfstoffen eingesetzt werden.

Kontakt:
PD Dr. Gerhard Mohr
Institut für Physikalische Chemie der Friedrich-Schiller-Universität Jena
Lessingstraße 10, 07743 Jena
Tel.: 03641/948368
E-Mail: gerhard.mohr[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Berichte zu: Farbstoff Gewebe NASCENT Nanometer Nanopartikel Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise