Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bauanleitung für eine molekulare Nase

02.02.2007
Max-Planck-Forscher betten Geruchsrezeptoren in künstliche Membranen ein

Eine künstliche Nase wäre manchmal eine Hilfe: Solch ein Biosensor könnte Gifte, Sprengstoff oder Drogen erschnuppern. Nun haben Forscher des Max-Planck-Instituts für Polymerforschung und des Max-Planck-Instituts für Biochemie eine Bauanleitung vorgelegt, wie sich Membranproteine in künstliche Strukturen einbetten lassen. Membranproteine übernehmen in Zellen vielfältige und wichtige Aufgaben. Unter anderem dienen sie als Rezeptoren, die Signale etwa von Molekülen in der Luft in das Zellinnere weiterleiten. Membranproteine sind also ideale Biosensoren, waren aber im Labor bislang schwer zugänglich. Den Max-Planck-Wissenschaftlern gelang es nun, durch zellfreie Proteinsynthese hergestellte Membranproteine direkt in künstliche Lipidmembranen einzubetten (Angewandte Chemie, International Edition, 15. Januar 2007).



Schematische Darstellung einer synthetischen Membran, die ein Geruchsrezeptormolekül - hier als lange Kette gezeichnet - enthält. An den Geruchsrezeptor bindet ein kugelförmiges Geruchsmolekül. Der linke Teil der Membran besteht aus Lipidmolekülen, der rechte aus einem Blockcopolymer. In Zukunft könnte dieses Polymer die Lipide ersetzen - die Membran wäre dadurch luftstabil. Bild: Max-Planck-Institut für Polymerforschung



Schematische Darstellung der zellfreien Synthese von Membranproteinen und anschließender Einbau in eine künstliche Membran. Die künstliche Membran besteht aus zwei Lipidschichten, die in ihrem Aufbau einer Zellmembran gleichen. In der (vereinfachten) Darstellung fädeln die Ribosomen aus dem zellfreien Extrakt die entstehende Aminosäurenkette direkt in die künstliche Membran ein - ganz so wie es in echten Zellen in der natürlichen Zellmembran geschieht. Bild: Max-Planck-Institut für Polymerforschung

Die Sinne der Lebewesen arbeiten mit verschiedenen Mechanismen: Unter anderem nutzen sie Membranproteine als Rezeptoren. Nun haben Wissenschaftler des Max-Planck-Instituts für Polymerforschung und des Max-Planck-Instituts für Biochemie Biosensoren konstruiert, indem sie solche Proteine in künstliche Strukturen eingebunden haben. Die zellfreie Proteinsynthese lieferte ihnen dabei die Membranproteine - direkt aus der genetischen Information, die dem Zellextrakt hinzugefügt wurde.

Die Versuche, Biosensoren aus Membranproteinen herzustellen, scheiterten an den besonderen Eigenschaften dieser Proteine. Sie sind nämlich nicht wasserlöslich. Bislang versuchten Forscher die Proteine erst einmal mit Detergentien aus ihrer Membran herauslösen. Dabei zerstören sie allerdings die besondere Faltstruktur der Proteinmembranen - und genau diese Struktur macht die spezielle Funktion der Proteine aus. "Wir stellten sehr schnell fest, wie kompliziert solche Membranproteine zu handhaben sind. Mit herkömmlichen Methoden bekamen wir - und auch andere Gruppen - sie einfach nicht in den Griff", erzählt Dr. Eva-Kathrin Sinner vom Mainzer Max-Planck-Institut für Polymerforschung.

Die Max-Planck-Wissenschaftler fanden nun einen Ausweg. Sie schafften es, die Proteine in eine künstliche Matrix einzubauen und zwar so, als befände sie sich in einer natürlichen Zellmembran: Die Wissenschaftler boten den entstehenden Membranproteinen schon während ihrer Herstellung künstliche Lipidmembransysteme an, die natürlichen Zellmembranen ähnelten. Und tatsächlich lagerten sich die Membranproteine - die Forscher benutzten bei ihren Versuchen Geruchsrezeptoren der Wanderratte aus der Klasse der G-Protein-gekoppelten Rezeptoren - in die künstlichen Membranen ein. Dass die Geruchsrezeptoren auch wirklich biologisch aktiv sind, konnten die Wissenschaftler durch die Bindung von Geruchsstoffen an die Rezeptoren nachweisen. "Wir haben jetzt praktisch eine Gebrauchsanweisung, wie man bisher schwer zugängliche Membranproteine in ihrer aktiven Struktur herstellen und untersuchen kann", so Sinner.

Das neue Verfahren der Gruppe um Eva-Kathrin Sinner ermöglicht erstmals die natürlichen Funktionen solcher Membranproteine in situ zu untersuchen. Für die Pharmaforschung ist dieser Ansatz von großer Bedeutung, da so neue Wirkstoffscreenings an Rezeptoren durchgeführt werden können, die bislang noch nicht zugänglich waren. Sinner wurde für die Entwicklung dieses Verfahrens mit dem Forschungspreis 2007 zur Förderung der Biotechnologie und Gentechnik der Engelhorn-Stiftung ausgezeichnet.

Originalveröffentlichung:

R. Robelek, E. S. Lemker, B. Wiltschi, V. Kirste, R. Naumann, D. Oesterhelt, E.-K. Sinner, Incorporation of in vitro Synthesized GPCR into a Tethered Artificial Lipid Membrane System, Angewandte Chemie, International Edition, 15. Januar 2007

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Biosensor Max-Planck-Institut Membran Membranprotein Protein Rezeptor

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Demenz: Neue Substanz verbessert Gehirnfunktion
28.07.2017 | Technische Universität München

nachricht Mit einem Flow-Reaktor umweltschonend Wirkstoffe erzeugen
28.07.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise