Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lernen will kontrolliert sein

19.10.2006
Synthese und Abbau von Proteinen halten sich bei Lernen und Gedächtnis die Waage

Erstmalig zeigen Wissenschaftler der beiden Martinsrieder Max-Planck-Institute für Neurobiologie und Biochemie, dass nicht nur die aktivitätsabhängige Synthese von Proteinen, sondern auch der gezielte Abbau von Proteinen ein wichtiger Mechanismus für die Speicherung von Information im Nervensystem ist (Neuron, 19. Oktober 2006).


In einem dichten Netzwerk sind Nervenzellen des Gehirns - hier im Hippocampus - über Synapsen miteinander verschaltet. Nicht nur aktivitätsabhängige Synthese von Proteinen, sondern auch der gezielte Abbau von Proteinen sind ein wichtiger Mechanismus für die Stabilisierung der Synapsen und damit auch für die Speicherung von Information im Gehirn. Bild: Max-Planck-Institut für Neurobiologie

Lernen und Gedächtnis sind lebensnotwendige Fähigkeiten für Mensch und Tier. Eine wesentliche Rolle bei diesen elementaren Funktionen unseres zentralen Nervensystems spielen dabei die Verknüpfungen zwischen den Nervenzellen - die Synapsen. Sie verändern sich abhängig von der Aktivität der sie beherbergenden Nervenzellen. Auf diese Weise können aus der Umwelt gewonnene Informationen langfristig abgespeichert werden. Durch hochfrequente Reizung bei Langzeitpotenzierung (LTP) werden Synapsen beispielsweise verstärkt und somit die Datenströme im Gehirn nachhaltig umgeleitet. Wissenschaftler sehen diese Verstärkung der Synapsen als neurophysiologische Grundlage für Lernen und Gedächtnis. Die Aufklärung der zugrunde liegenden zellulären Mechanismen ist eine der großen Herausforderungen an die modernen Neurowissenschaften und ein zentrales Forschungsanliegen in der Abteilung von Tobias Bonhoeffer am Max-Planck-Institut für Neurobiologie.

In Zusammenarbeit mit Ramunas Vabulas vom Max-Planck-Institut für Biochemie, Abteilung Ulrich Hartl, konnten Bonhoeffers Mitarbeiter Rosalina Fonseca und Valentin Nägerl nun zeigen, dass es für die Aufrechterhaltung dieser synaptischen Verstärkung nicht nur der Neusynthese synaptischer Proteine - Plastizitäts-Faktoren genannt - bedarf, sondern dass ebenso der gezielte Abbau von inhibitorischen Faktoren erforderlich ist. Bisher hatte man angenommen, dass das Auslösen einer Langzeitpotenzierung lediglich zur Synthese von "positiven" Plastizitäts-Faktoren führt, die wiederum die potenzierten Synapsen langfristig verstärken. Doch nach den neuesten Ergebnissen muss diese Sichtweise nun revidiert werden. "Tatsächlich kommt es im Zuge der Langzeitpotenzierung sowohl zu einer erhöhten Produktion als auch zu einem erhöhten Abbau von positiven und negativen Plastizitäts-Faktoren", erklärt Projektleiter Valentin Nägerl.

Verblüffend, aber dennoch folgerichtig, war, dass es sogar ohne die Neusynthese der Plastizitäts-Faktoren zur Bildung einer lang anhaltenden Verstärkung von neuronalen Verbindungen kommen kann. Voraussetzung dafür war allerdings, dass zeitgleich der Proteinabbau durch das intrazelluläre Ubiquitin-Proteasom-System (UPS) pharmakologisch gehemmt wurde. Sind sowohl die Synthese als auch der Abbau gehemmt, reicht schon die anfängliche Potenzierung für eine dauerhafte Verstärkung der Synapsen aus, sie wird bei Blockade des UPS sozusagen in Stein gemeißelt.

Die Wissenschaftler führten ihre Experimente an dünnen Hirngewebsscheiben des Hippokampus der Ratte aus. Dieses Hirnareal, so weiß man seit langem, ist maßgeblich an der Gedächtnisbildung beteiligt - bei der Ratte wie auch beim Menschen. Die Forscher setzten dabei gängige Methoden der Neurophysiologie ein, um das Reiz-Antwortverhalten von vielen Synapsen im Hippokampus gleichzeitig ableiten zu können. Darüber hinaus benutzten sie pharmakologische Substanzen, mit denen spezifisch der Synthese- und/oder der Abbauweg von Zellproteinen geblockt werden konnte. Damit war es möglich, die wechselwirkenden Einflüsse der Neubildung und des Abbaus von Proteinen auf die synaptische Plastizität zu untersuchen.

Die Studie fußt auf einer anderen, kürzlich veröffentlichten Publikation der Max-Planck-Forscher in der Zeitschrift Nature Neuroscience. Darin konnten sie zeigen, dass die Stabilität der synaptischen Plastizität ganz entscheidend von der Stimulierung der Synapse in der frühen Phase der Langzeitpotenzierung abhängt. Die Forscher hatten immer schon angenommen, dass die Aktivität der Synapsen den Umsatz von Proteinen steigert, die für die Langzeitpotenzierung notwendig sind, und dass auf diese Weise die Stabilität der LTP moduliert wird. Die aktuellen Befunde bestätigen diese Überlegungen. Darüber hinaus konnten Fonseca, Nägerl und Bonhoeffer nachweisen, dass die anfängliche synaptische Potenzierung durch niederfrequente Reizung der Synapsen gefestigt werden muss. Bleibt das aus, ist die synaptische Verstärkung weitaus instabiler als sonst und bedarf der fortdauernden Neusynthese an Plastizitäts-Faktoren. "In diesen Untersuchungen konnten wir erste Hinweise dafür sammeln, dass die Stabilität der synaptischen Plastizität auch von einem aktivitätsabhängigen Abbau der Plastizitäts-Faktoren abhängt. Unsere in der Zeitschrift Neuron veröffentlichten Daten haben das nun wunderbar bestätigt", freut sich Tobias Bonhoeffer.

[VN/CB]

Originalveröffentlichung:

Rosalina Fonseca, Valentin U. Nägerl and Tobias Bonhoeffer
Neuronal activity determines the protein synthesis dependence of long-term potentiation.

NatureNeuroscience 2006 April;9(4):478-80

Rosalina Fonseca, Ramunas M. Vabulas, F. Ulrich Hartl, Tobias Bonhoeffer, and Valentin U. Nägerl
A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP

Neuron 52, 1-7, October 19, 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik