Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lernen will kontrolliert sein

19.10.2006
Synthese und Abbau von Proteinen halten sich bei Lernen und Gedächtnis die Waage

Erstmalig zeigen Wissenschaftler der beiden Martinsrieder Max-Planck-Institute für Neurobiologie und Biochemie, dass nicht nur die aktivitätsabhängige Synthese von Proteinen, sondern auch der gezielte Abbau von Proteinen ein wichtiger Mechanismus für die Speicherung von Information im Nervensystem ist (Neuron, 19. Oktober 2006).


In einem dichten Netzwerk sind Nervenzellen des Gehirns - hier im Hippocampus - über Synapsen miteinander verschaltet. Nicht nur aktivitätsabhängige Synthese von Proteinen, sondern auch der gezielte Abbau von Proteinen sind ein wichtiger Mechanismus für die Stabilisierung der Synapsen und damit auch für die Speicherung von Information im Gehirn. Bild: Max-Planck-Institut für Neurobiologie

Lernen und Gedächtnis sind lebensnotwendige Fähigkeiten für Mensch und Tier. Eine wesentliche Rolle bei diesen elementaren Funktionen unseres zentralen Nervensystems spielen dabei die Verknüpfungen zwischen den Nervenzellen - die Synapsen. Sie verändern sich abhängig von der Aktivität der sie beherbergenden Nervenzellen. Auf diese Weise können aus der Umwelt gewonnene Informationen langfristig abgespeichert werden. Durch hochfrequente Reizung bei Langzeitpotenzierung (LTP) werden Synapsen beispielsweise verstärkt und somit die Datenströme im Gehirn nachhaltig umgeleitet. Wissenschaftler sehen diese Verstärkung der Synapsen als neurophysiologische Grundlage für Lernen und Gedächtnis. Die Aufklärung der zugrunde liegenden zellulären Mechanismen ist eine der großen Herausforderungen an die modernen Neurowissenschaften und ein zentrales Forschungsanliegen in der Abteilung von Tobias Bonhoeffer am Max-Planck-Institut für Neurobiologie.

In Zusammenarbeit mit Ramunas Vabulas vom Max-Planck-Institut für Biochemie, Abteilung Ulrich Hartl, konnten Bonhoeffers Mitarbeiter Rosalina Fonseca und Valentin Nägerl nun zeigen, dass es für die Aufrechterhaltung dieser synaptischen Verstärkung nicht nur der Neusynthese synaptischer Proteine - Plastizitäts-Faktoren genannt - bedarf, sondern dass ebenso der gezielte Abbau von inhibitorischen Faktoren erforderlich ist. Bisher hatte man angenommen, dass das Auslösen einer Langzeitpotenzierung lediglich zur Synthese von "positiven" Plastizitäts-Faktoren führt, die wiederum die potenzierten Synapsen langfristig verstärken. Doch nach den neuesten Ergebnissen muss diese Sichtweise nun revidiert werden. "Tatsächlich kommt es im Zuge der Langzeitpotenzierung sowohl zu einer erhöhten Produktion als auch zu einem erhöhten Abbau von positiven und negativen Plastizitäts-Faktoren", erklärt Projektleiter Valentin Nägerl.

Verblüffend, aber dennoch folgerichtig, war, dass es sogar ohne die Neusynthese der Plastizitäts-Faktoren zur Bildung einer lang anhaltenden Verstärkung von neuronalen Verbindungen kommen kann. Voraussetzung dafür war allerdings, dass zeitgleich der Proteinabbau durch das intrazelluläre Ubiquitin-Proteasom-System (UPS) pharmakologisch gehemmt wurde. Sind sowohl die Synthese als auch der Abbau gehemmt, reicht schon die anfängliche Potenzierung für eine dauerhafte Verstärkung der Synapsen aus, sie wird bei Blockade des UPS sozusagen in Stein gemeißelt.

Die Wissenschaftler führten ihre Experimente an dünnen Hirngewebsscheiben des Hippokampus der Ratte aus. Dieses Hirnareal, so weiß man seit langem, ist maßgeblich an der Gedächtnisbildung beteiligt - bei der Ratte wie auch beim Menschen. Die Forscher setzten dabei gängige Methoden der Neurophysiologie ein, um das Reiz-Antwortverhalten von vielen Synapsen im Hippokampus gleichzeitig ableiten zu können. Darüber hinaus benutzten sie pharmakologische Substanzen, mit denen spezifisch der Synthese- und/oder der Abbauweg von Zellproteinen geblockt werden konnte. Damit war es möglich, die wechselwirkenden Einflüsse der Neubildung und des Abbaus von Proteinen auf die synaptische Plastizität zu untersuchen.

Die Studie fußt auf einer anderen, kürzlich veröffentlichten Publikation der Max-Planck-Forscher in der Zeitschrift Nature Neuroscience. Darin konnten sie zeigen, dass die Stabilität der synaptischen Plastizität ganz entscheidend von der Stimulierung der Synapse in der frühen Phase der Langzeitpotenzierung abhängt. Die Forscher hatten immer schon angenommen, dass die Aktivität der Synapsen den Umsatz von Proteinen steigert, die für die Langzeitpotenzierung notwendig sind, und dass auf diese Weise die Stabilität der LTP moduliert wird. Die aktuellen Befunde bestätigen diese Überlegungen. Darüber hinaus konnten Fonseca, Nägerl und Bonhoeffer nachweisen, dass die anfängliche synaptische Potenzierung durch niederfrequente Reizung der Synapsen gefestigt werden muss. Bleibt das aus, ist die synaptische Verstärkung weitaus instabiler als sonst und bedarf der fortdauernden Neusynthese an Plastizitäts-Faktoren. "In diesen Untersuchungen konnten wir erste Hinweise dafür sammeln, dass die Stabilität der synaptischen Plastizität auch von einem aktivitätsabhängigen Abbau der Plastizitäts-Faktoren abhängt. Unsere in der Zeitschrift Neuron veröffentlichten Daten haben das nun wunderbar bestätigt", freut sich Tobias Bonhoeffer.

[VN/CB]

Originalveröffentlichung:

Rosalina Fonseca, Valentin U. Nägerl and Tobias Bonhoeffer
Neuronal activity determines the protein synthesis dependence of long-term potentiation.

NatureNeuroscience 2006 April;9(4):478-80

Rosalina Fonseca, Ramunas M. Vabulas, F. Ulrich Hartl, Tobias Bonhoeffer, and Valentin U. Nägerl
A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP

Neuron 52, 1-7, October 19, 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Selbsthaftende Gespenster
21.06.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Das Geheimnis der Sojabohne: Mainzer Forscher untersuchen Ölkörperchen in Sojabohnen
21.06.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Stahl-Innovationspreis 2018: Mikro-Dampfturbine ausgezeichnet

21.06.2018 | Förderungen Preise

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungsnachrichten

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics