Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Telomerische Sequenzen und DNA-Modifikationen

25.05.2004


Eines der wichtigsten Forschungsgebiete, die telomerische Biologie, hat bereits bedeutendes Wissen über die Prozesse der DNA-Schädigung, Zellalterung und Krebserkrankung erbracht. Hierbei wurde im Rahmen des EU-finanzierten TELORAD-Projekts die Stabilität von Interstitiellen Teleomerischen Sequenzen (ITS) im Säugetiergenom und die Verbindung zu Zellprozessen und Radiosensibilität intensiv untersucht.


Telomere sind spezialisierte Strukturen, die sich am Ende eines Chromosoms befinden und für Alterungsprozesse und Tumorbildung verantwortlich gemacht werden. Aufgrund der Evolution der Arten befinden sich auch an Stellen innerhalb der Chromosomen kleinere telomerische Ansammlungen. Unter Berücksichtigung dieser Interstitiellen Telomerischen Sequenzen (ITS) hat TELORAD menschliche Zellen und Zellen von Hamstern analysiert und eine Vielzahl von wichtigen wissenschaftlichen Erkenntnissen erbracht. Es wurden Mechanismen bestimmt, die zu DNA-Schäden, DNA-Repartur sowie zur Genverstärkung beitragen.

Kurze ITS haben ihren Ursprung wahrscheinlich in den frühesten Phasen der Zellentwicklung während der Reparatur der DNA-Doppelstrangbrüche (DSB). Obwohl sie sowohl in menschlichen Zellen als auch Hamsterzellen vorkommen können, fehlt den menschlichen ITS die Eigenschaft der Radiosensibilität. Das kann daran liegen, dass hier die Reparatur von DSB in erster Linie durch Streichungen an der Bruchstelle und nicht durch das Einfügen von Nukleotiden geschieht. Andererseits sind Hamsterzellreihen mit verstärkter DNA oft radiosensibel und zeigen eine spontane und durch Radioaktivität hervorgerufene Chromosomeninstabilität.


DSB wurden als eine der wichtigsten Ursachen der Genverstärkung ausgemacht. Dabei handelt es sich um einen Prozess, bei dem die Gene ihren vorhandenden Phänotyp in der Zelle verstärken. Es wurde gezeigt, dass Genverstärkung viel häufiger auftritt, wenn Schäden an den DSB-Reparaturgenen existieren. Deswegen haben große ITS auch oftmals einen Anteil an spontanen Chromosomenanomalien. Außerdem kann Strahlung, wie zum Beispiel Gammastrahlen, Genverstärkung hervorrufen und damit schwache DSB-Reparaturzellen stark beeinflussen. Deshalb sind große ITS nicht in durch Radioaktivität hervorgerufene Chromosomendefekte eingeschlossen. I

TELORAD hat neue Einsichten in diese biologischen Auswirkungen geliefert, die wahrscheinlich einen erheblichen Anteil an Zellforschungen und der Einschätzung von Krebsrisiken haben werden. Für das Projekt wurden menschliche Zellreihen und Zellreihen von Hamstern entwickelt, die sich für eine effiziente Untersuchung der während der DSB-Reparatur auftretenden DNA-Modifikationen eignen.

Kontakt:

Laure Sabatier
CEA
DSV-DRR-LRO BP6
92290 Fontenay-aux-Roses, Frankreich
Tel: +33-1-46548351, Fax: -758
Email: sabatier@dsvidf.cea.fr

Laure Sabatier | ctm
Weitere Informationen:
http://www.cea.fr

Weitere Berichte zu: DNA-Modifikationen Genverstärkung ITS Sequenzen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise