Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blutstammzellen aus dem Bioreaktor - Neue Chancen für die Krebstherapie

29.05.2001


Sie sind vielfältig und in der Medizin sehr begehrt: blutbildende Stammzellen. Lebenslang sorgen sie für die ständige Erneuerung des Bluts und für ein intaktes Immunsystem. In der Krebstherapie sind sie überlebenswichtig für den Patienten. Bislang war eine Knochenmark-Spende die einzige Chance, blutbildende Stammzellen zu übertragen. Auch in Nabelschnurblut sind diese wertvollen Zellen enthalten, jedoch nicht in ausreichender Menge. Hier ist den Biotechnologen des Forschungszentrums Jülich ein Erfolg gelungen: Sie entwickelten gleich zwei neue Bioreaktoren, in denen blutbildende Stammzellen, aber auch reife Blutzellen in großem Maßstab kultiviert und vermehrt werden können.
Nabelschnurblut, das normalerweise nach der Geburt entsorgt wird, enthält eine begrenzte Menge blutbildender Stammzellen. Diese Zellen helfen krebskranken Kindern, deren Immunsystem durch eine Chemo- oder Strahlentherapie zerstört ist. Denn durch die aggressive Behandlung werden nicht nur die Krebszellen, sondern auch die Immunzellen angegriffen. Allein aus Stammzellen kann sich wieder ein intaktes Immunsystem entwickeln. Nabelschnurblut enthält jedoch nicht genügend dieser vielseitigen Zellen, um auch größere Kinder und Erwachsene zu behandeln. Ihnen muss aufwändig Knochenmark transplantiert werden. Für 20 Prozent aller Patienten kann trotz weltweiter Suche kein passender Spender gefunden werden.


Doch eine Lösung ist in Sicht. Die Wissenschaftler vom Institut für Biotechnologie haben einen Bioreaktor entwickelt, in dem unter kontrollierten Bedingungen Stammzellen kultiviert werden können. Das ist nicht einfach, denn die Zellen sind anspruchsvoll. Immerhin leben sie normalerweise in einem der größten und aktivsten Organe des menschlichen Körpers, dem Knochenmark. Um dieses natürliche Umfeld zu simulieren, haben die Jülicher Forscher sich eine besondere Technik ausgedacht. Sie benutzen im neuen Bioreaktor kleine poröse Kugeln aus Kollagen, einem Eiweiß, in deren Hohlräumen sich die Stammzellen wie in den Nischen des Knochenmarks ansiedeln können.
Auf überraschend einfache Weise werden die blutbildenden Zellen schließlich von den Wissenschaftlern geerntet: ein Enzym wird zugegeben und löst die Kugeln auf. Übrig bleiben die wertvollen Zellen. Auf diese Weise können bereits klinisch relevante Mengen produziert werden, auch wenn das Verfahren vor dem klinischen Einsatz noch intensiv geprüft werden muss.

Aber auch die Milliarden von roten und weißen Blutkörperchen, die täglich im Knochenmark eines Erwachsenen aus den Stammzellen heranreifen, sind in der Medizin von großer Bedeutung. Hier eröffnet der zweite entwickelte Bioreaktor aus dem Jülicher Labor neue Perspektiven. Mit ihm können die Forscher in ausreichender Menge Zellen produzieren, die zur gezielten Abwehr von Krankheitserregern nötig sind. Das ist wichtig für Patienten mit geschwächtem Abwehrsystem. Dieser Bioreaktor ist anwendungsreif. Das Kultursystem, bei dem die Zellen sich frei in einer gerührten Nährlösung befinden, ist vielfältig einsetzbar. So ist es denkbar, zukünftig in diesem Bioreaktor gezielt Zellen für Blutspenden zu produzieren.
"Für uns war und ist es eine Frage der Ehre, ein so zukunftsweisendes Projekt zum Wohle schwer kranker Menschen zu unterstützen", erklärt Dr. Dartsch vom Jülicher Malteser-Krankenhaus, dessen Mitarbeiter von der Geburtshilfe-Station 250 Nabelschnurblutproben für die Wissenschaftler sammelten. Nur so waren die Forschungen möglich, die mit einen Anstoß gaben, die Firma MainGen in Frankfurt zu gründen.


Peter Schäfer | idw
Weitere Informationen:
http://www.fz-juelich.de/oea/PM2001/2001-27-Stammzellen.html

Weitere Berichte zu: Bioreaktor Immunsystem Knochenmark Krebstherapie Stammzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics