Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schärfere Bilder aus dem Inneren einer Zelle

22.05.2001


Durchbruch der Auflösungsgrenze im Lichtmikroskop - Helmholtz-Preis für zwei Göttinger Wissenschaftler

... mehr zu:
»Lichtmikroskop »Molekül »Zelle

Seltsame Landschaften aus den buckeligen Oberflächen einzelner Atome - solche Bilder gehören dank der Rastersondenmikroskopie in der Physik zum Stand der Technik. In der biologischen und medizinischen Forschung spielt dagegen das klassische Lichtmikroskop noch immer eine überragende Rolle, denn es bietet zwei Vorteile: Es zerstört lebende Zellen nicht und ermöglicht auch Einblicke in tiefere Gewebeschichten. Das Problem, dass es sich bisher nur für die Betrachtung relativ grober Strukturen eignete, haben Stefan W. Hell und Thomas A. Klar vom Göttinger Max-Planck-Institut für Biophysikalische Chemie nun gelöst: Sie entwickelten ein Verfahren, mit dem es möglich ist, mit dem Lichtmikroskop auch kleinste Strukturen im Inneren einer Zelle detailreich zu erkennen. Für diese entscheidende Verbesserung der Messtechnik erhalten die beiden Forscher den diesjährigen Helmholtz-Preis.

Ob in der Biotechnologie oder der Medizin - wer lebende Zellen erforscht, steht (bisher) stets vor demselben Dilemma: Um feinste Strukturen zu erkennen, eignen sich nur die modernen Röntgen-, Elektronen- oder Rastersondenmikroskope. Aber beim Elektronenmikroskop bleiben die Elektronen nach einigen Mikrometern in der Probenoberfläche stecken, und die Rastersondenmikroskope sind grundsätzlich nur Oberflächenverfahren. Man behilft sich damit, Zellen zu präparieren und in hauchdünne Schichten zu schneiden, um aus einer Vielzahl von Schnittaufnahmen die Zelle zu rekonstruieren. Doch lebende Zellen lassen sich so nicht beobachten. Das gilt auch für das Röntgenmikroskop, dessen hochenergetische Strahlen zwar tiefer ins Gewebe eindringen, aber die Zelle bei der ersten Belichtung abtöten.


Bleibt also nur das Lichtmikroskop, mit dem sich das Zellinnere schonend erkunden lässt. Aber die Wellennatur des Lichts verhindert, dass das Licht feiner als eine halbe Wellenlänge fokussiert werden kann. Deshalb lassen sich so nur Strukturen bis zu einer Größe von rund 250 Nanometern deutlich erkennen. Für viele Zellbestandteile (wie den Golgi-Apparat, Chloroplasten in Pflanzen oder die bei der Nervenkommunikation entscheidenden Vesikel) reicht die Auflösung nicht aus.


Das neue Verfahren von Stefan Hell und Thomas Klar umgeht diese Beschränkung und macht damit den Weg frei für ganz neue Einsatzmöglichkeiten eines Lichtmikroskops. Es beruht auf dem Prinzip der konfokalen Fluoreszenzmikroskopie. Dabei fokussiert man (Laser-) Licht durch das Objektiv eines Mikroskops. Die getroffenen Moleküle werden zur Fluoreszenz angeregt. Aus der Fluoreszenzstrahlung, die sich mit einem Detektor auffangen lässt, kann dann durch Rasterung ein 3-D-Bild der Zelle erstellt werden. Das Problem liegt nun darin, dass das Laserlicht beim Weg durch das Objektiv gebeugt wird. Die Folge: Der fluoreszierende Teil der Moleküle bekommt einen unscharfen Rand, den Hell und Klar mit einem Trick quasi "abrasieren": Mit einem zweiten intensiven Laserstrahl passender Wellenlänge, der zudem einen ringförmigen Fokus erzeugt, werden die Moleküle im Randbereich des Fokus am Fluoreszieren gehindert. Dieses "Abregen durch Licht" funktioniert nur, wenn es schneller als die Fluoreszenz erfolgt, also innerhalb von wenigen Pikosekunden abgeschlossen ist. Die Wissenschaftler setzen sogar noch kürzere Pulse von nur 280 Femtosekunden Dauer ein.

Das neue Verfahren erlaubt im Prinzip Auflösungen bis in den molekularen Bereich. So können schärfere und damit informativere 3-D-Bilder aus dem Inneren einer Zelle entstehen. Außerdem lässt sich die Ultrakurzzeitdynamik biochemischer Abläufe in Zellen und Zellverbänden erfassen. In Zukunft könnte es auch dazu beitragen, optische Speicher mit höherer Dichte zu entwickeln oder noch feinere Strukturen bei Mikrochips zu realisieren.



Dipl.-Journ. Erika Schow | idw

Weitere Berichte zu: Lichtmikroskop Molekül Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Polymere aus Bor produzieren
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Modularer Genverstärker fördert Leukämien und steuert Wirksamkeit von Chemotherapie
18.01.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

18.01.2018 | Informationstechnologie

Optimierter Einsatz magnetischer Bauteile - Seminar „Magnettechnik Magnetwerkstoffe“

18.01.2018 | Seminare Workshops

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungsnachrichten