Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rock ’n’ Roll in der Röhre

05.03.2004


Metallatom-gefüllte Fullerene "hüpfen" in Kohlenstoffnanoröhren



Die technische Welt wird immer kleiner, irgendwann wird die Minituarisierung von Chips in Größenordnungen vorgedrungen sein, in denen man mit einzelnen Atomen arbeiten muss. Als Bausteine für so gennannte "Quantencomputer" und die Nano-Elektronik von Morgen werden molekulare Arrangements als heiße Kandidaten gehandelt, die wie nanometergroße Erbsenschoten aussehen: Kohlenstoffnanoröhren, die mit kugelförmigen Fullerenmolekülen gefüllt sind. Die Fullerene selber beherbergen Metallatome in ihrem Hohlraum. Solche "Erbsen" hüpfen in ihren "Schoten", wie ein britisch-japanisches Forscherteam beobachtet hat.

... mehr zu:
»Ceratom »Erbsen »Fulleren »Rotation »Schote


Andrei N. Khlobystov und Andrew Briggs von der Oxford University, John Dennis von der University of London und ihre Kollegen setzten als "Erbsen" Fullerene aus 82 Kohlenstoffatomen ein, runde käfigartige Moleküle, die mit je einem Ceratom gefüllt wurden. Im Kristall rotieren diese molekularen "Käfige" völlig frei. Was passiert, wenn die Erbsen in Schoten, sprich Kohlenstoffnanoröhrchen, gefüllt werden? Mit einem hochauflösenden Elektronenmikroskop lassen sich die Fullerene in den Nanoröhren gut erkennen. Zunächst kann man konstatieren, dass sich die Erbsen seitlich bewegen. Sind die Schoten nur teilweise gefüllt, hüpfen die Erbsen abrupt, unregelmäßig und unabhängig von einander hin und her. In komplett gefüllten Schoten fällt die Bewegung der dicht an dicht hockenden Erbsen langsamer und kontinuierlicher aus - und die ganze Reihe bewegt sich kollektiv!

Da das Ceratom elektronenmikroskopisch im Fulleren auszumachen ist, kann außerdem die Rotationsbewegung der Erbsen nachvollzogen werden. Denn die Ceratome befinden sich nicht im Zentrum des Fullerenhohlraums, sondern "kleben" fest an einer Stelle der "Hülle". Auf Grund von Dipol-Dipol-Wechselwirkungen zwischen dem asymmetrisch gefüllten Fulleren und dem Nanoröhrchen gibt es eine bevorzugte Ausrichtung bezüglich der Röhrenachse. Auch seine zwei nächsten Nachbarn beeinflussen ein Fulleren. Mit der freien Rotation wie im Kristall, wo jedes Fulleren 12 nächste Nachbarn hat, ist es jedenfalls vorbei: Die Fullerene springen von einer Position in eine andere, verharren, werfen sich herum in die nächste - rasch, abrupt und unregelmäßig. Packt man die einzelnen Erbsenschoten zu Bündeln zusammen, wird diese diskontinuierliche Rotation schneller. Grund sind die zusätzlichen Wechselwirkungen der Fullerene mit Nachbarn aus anderen Röhren des Bündels. Innerhalb dieser komplexen Symmetrie ist die Rotation offenbar weniger eingeschränkt. Der Zustand im Bündel ist damit eine Art Zwischending zwischen dem dreidimensionalen Kristallgitter und dem quasi-eindimensionalen Zustand im isolierten Nanoröhrchen.


Kontakt: Dr. A. N. Khlobystov
Department of Materials
Oxford University
Parks Rd.
Oxford
OX1 3PH
UK
Fax: (+44) 1865-273789
E-mail: Andrei.Khlobystov@materials.ox.ac.uk

Angew. Chem. 2004, 116 (11), 1410 - 1413

ANGEWANDTE CHEMIE
Postfach 101161
D-69451 Weinheim
Tel.: 06201/606 321
Fax: 06201/606 331
E-Mail: angewandte@wiley-vch.de

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.org

Weitere Berichte zu: Ceratom Erbsen Fulleren Rotation Schote

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht «Schwangere» Stubenfliegenmännchen zeigen Evolution der Geschlechtsbestimmung
23.05.2017 | Universität Zürich

nachricht Goldene Hilfe gegen Hautkrankheiten
23.05.2017 | Hochschule Ostwestfalen-Lippe

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

WHZ erhält hochmodernen Prüfkomplex für Schraubenverbindungen

23.05.2017 | Maschinenbau

«Schwangere» Stubenfliegenmännchen zeigen Evolution der Geschlechtsbestimmung

23.05.2017 | Biowissenschaften Chemie

Tumult im trägen Elektronen-Dasein

23.05.2017 | Physik Astronomie