Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chaoskontrolle in der Chemie

18.05.2001


Max-Planck-Wissenschaftler steuern chaotische Mikrostrukturen in katalytischer Reaktion / Neue Erkenntnisse über Musterbildung in der Natur

Spontane Strukturbildung und komplexes Chaos gehören zu den faszinierendsten Phänomenen in der Natur. Zum ersten Mal ist es jetzt Wissenschaftlern des Berliner Fritz-Haber-Instituts der Max-Planck-Gesellschaft gelungen, chaotische Strukturen in einer chemischen Reaktion nicht nur zu beobachten, sondern auch zu steuern (Science, 18. Mai 2001). Hierzu implementierten die Forscher eine künstliche Rückkopplung in die durch Platin katalysierte Oxidationsreaktion von Kohlenmonoxid. Die neuen Strukturen, die für das Verständnis selbstorganisierter Strukturbildung in der Natur von grundlegender Bedeutung sind, hatten sie zuvor durch mathematische Modellierung der Reaktion vorhergesagt.

Abbildung 1: Verschiedene Muster in der Oxidationsreaktion von Kohlenmonoxid auf einer Platinoberfläche, aufgenommen mit einer speziellen Mikroskopietechnik. Blaue Bereiche sind vorwiegend mit Sauerstoff, rote Bereiche mit Kohlenmonoxid bedeckt. Von links nach rechts: Chaotische Spiralwellen und künstlich durch Rückkopplung erzeugte chaotische Ringstrukturen, reguläre Domänen und Streifenmuster.

Bild: Fritz-Haber-Institut der Max-Planck-Gesellschaft


Strukturbildung durch Selbstorganisation ist in der Natur in unterschiedlichsten Formen beobachtbar, von der Strudelbildung und Turbulenz in Flüssigkeitsströmungen bis hin zur Aggregation von Bakterien in biologischen Systemen. Gemeinsame Voraussetzung solcher Phänomene ist ein Systemzustand fern des Gleichgewichtes. In chemischen Reaktionen kann dies erreicht werden, indem kontinuierlich frische Reaktanden zugegeben und Reaktionsprodukte entnommen werden.

Wissenschaftler am Fritz-Haber-Institut haben die Strukturbildung am Beispiel der katalytischen Oxidation von Kohlenmonoxid untersucht. In der betrachteten Reaktion haften Sauerstoff und Kohlenmonoxid (CO) zunächst auf einer katalytischen Platin(110)-Einkristalloberfläche. Die auf der Oberfläche beweglichen CO-Moleküle reagieren dann jeweils mit einem Sauerstoffatom zu Kohlendioxid, welches die Oberfläche sogleich wieder verlässt. Unter geeigneten Bedingungen bilden sich dabei selbstorganisierte Muster in Form mikroskopisch kleiner, vorwiegend Sauerstoff- beziehungsweise CO-bedeckter Bereiche auf der Platinoberfläche.

Diese räumlichen Bedeckungsmuster werden von zeitlichen Schwankungen (Oszillationen) der Sauerstoff- und CO-Bedeckung im Takt von wenigen Sekunden begleitet. Die nur einige Mikrometer durchmessenden Strukturen wurden mit einem am Fritz-Haber-Institut entwickelten Photoemissions-Elektronenmikroskopieverfahren sichtbar gemacht. Als typische Muster entstehen dabei chaotische Spiralwellen, die spontan wieder in Fragmente zerfallen und sich dabei reproduzieren. Die Spiralwellen reagieren so sensibel auf kleinste Störungen, dass sich ihr Verhalten nicht über längere Zeiträume vorhersagen lässt. Die Wissenschaftler sprechen deshalb von einem hochdimensionalen, raumzeitlichen Chaos, dessen Dynamik Veränderungen in Raum und Zeit einschließt.

Abbildung2: Ergebnisse von Experimenten an der CO-Oxidation (links) und deren mathematische Modellierung (rechts). Für jeweils zwei verschiedene Muster sind Raum-Zeit-Diagramme entlang eines Schnittes durch die Oberfläche gezeigt (oben chaotische Ringstrukturen, unten reguläre Domänen).

Bild: Fritz-Haber-Institut der Max-Planck-Gesellschaft


In der von Professor Gerhard Ertl geleiteten Abteilung des Fritz-Haber-Instituts konnten Theoretiker um Alexander Mikhailov anhand mathematischer Modellrechnungen vorhersagen, dass sich chaotische Strukturen mithilfe einer Rückkopplungsschleife unterdrücken und durch neuartige, vorher im Chaos verborgene Muster ersetzen lassen. Daraufhin gelang es Experimentatoren um Harm-Hinrich Rotermund in der selben Abteilung, solche Muster auch tatsächlich im Labor zu beobachten. Sie konnten gezielt neue Strukturen wie chaotische Ringmuster, reguläre Domänenmuster und reguläre Streifenmuster auf der Platinoberfläche erzeugen. Die Methode der dazu verwendeten Rückkopplung ist so effizient wie einfach: Während die Forscher die Muster auf der Platin-Oberfläche beobachteten, variierten sie die Zugaberate von Kohlenmonoxid (CO) in direkter Abhängigkeit von den auftretenden Strukturen. Die Zugabe von CO war dabei direkt proportional zur über das Sichtfenster gemittelten Bildhelligkeit im Mikroskop. Diese Methode störte die räumlichen Muster nicht direkt, sondern beeinflusste die Reaktionsbedingungen überall auf der Oberfläche in gleicher Weise. Unter den so veränderten Rahmenbedingungen konnten sich dabei die neu beobachteten Muster selbstorganisiert ausbilden. Die Max-Planck-Wissenschaftler erbrachten damit erstmals den experimentellen Beweis, dass hochdimensionales Chaos in chemischen Systemen mit einfachen Methoden beherrscht werden kann.

Die Ergebnisse stellen einen wichtigen Fortschritt im Verständnis spontaner Strukturbildung und deren Steuerung dar. Viele Resultate können auch auf ganz andere strukturbildende Systeme in und außerhalb der Chemie übertragen werden. Darüber hinaus kann die Beherrschbarkeit von hochdimensionalem Chaos für die Kontrolle technischer Prozesse, in denen Chaos meistens unerwünscht ist, von Bedeutung sein.

Originalarbeit:
Minseok Kim, Matthias Bertram, Michael Pollmann, Alexander von Oertzen, Alexander Mikhailov, Harm Hinrich Rotermund, Gerhard Ertl: Controlling Chemical Turbulence by Global Delayed Feedback: Pattern Formation in Catalytic CO Oxidation Reaction on Pt(110), Science, 18. Mai 2001

Weitere Informationen erhalten Sie von:

Dr. Harm-Hinrich Rotermund
Fritz-Haber-Institut der Max-Planck-Gesellschaft
Abteilung Physikalische Chemie
Tel.: 030 / 8413-5129
Fax: 030 / 8413-5106
E-Mail: rotermun@fhi-berlin.mpg.de

Presseinformation |

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit den Augen der Biene: Zoologe der Uni Graz entwickelt Verfahren zur Verbesserung dunkler Bilder
11.12.2017 | Karl-Franzens-Universität Graz

nachricht Molekulare Chaperone als Helfer gegen Chorea-Huntington identifiziert
11.12.2017 | Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einmal durchleuchtet – dreifacher Informationsgewinn

11.12.2017 | Physik Astronomie

Kaskadennutzung auch bei Holz positiv

11.12.2017 | Agrar- Forstwissenschaften

Meilenstein in der Kreissägetechnologie

11.12.2017 | Energie und Elektrotechnik