Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chaoskontrolle in der Chemie

18.05.2001


Max-Planck-Wissenschaftler steuern chaotische Mikrostrukturen in katalytischer Reaktion / Neue Erkenntnisse über Musterbildung in der Natur

Spontane Strukturbildung und komplexes Chaos gehören zu den faszinierendsten Phänomenen in der Natur. Zum ersten Mal ist es jetzt Wissenschaftlern des Berliner Fritz-Haber-Instituts der Max-Planck-Gesellschaft gelungen, chaotische Strukturen in einer chemischen Reaktion nicht nur zu beobachten, sondern auch zu steuern (Science, 18. Mai 2001). Hierzu implementierten die Forscher eine künstliche Rückkopplung in die durch Platin katalysierte Oxidationsreaktion von Kohlenmonoxid. Die neuen Strukturen, die für das Verständnis selbstorganisierter Strukturbildung in der Natur von grundlegender Bedeutung sind, hatten sie zuvor durch mathematische Modellierung der Reaktion vorhergesagt.

Abbildung 1: Verschiedene Muster in der Oxidationsreaktion von Kohlenmonoxid auf einer Platinoberfläche, aufgenommen mit einer speziellen Mikroskopietechnik. Blaue Bereiche sind vorwiegend mit Sauerstoff, rote Bereiche mit Kohlenmonoxid bedeckt. Von links nach rechts: Chaotische Spiralwellen und künstlich durch Rückkopplung erzeugte chaotische Ringstrukturen, reguläre Domänen und Streifenmuster.

Bild: Fritz-Haber-Institut der Max-Planck-Gesellschaft


Strukturbildung durch Selbstorganisation ist in der Natur in unterschiedlichsten Formen beobachtbar, von der Strudelbildung und Turbulenz in Flüssigkeitsströmungen bis hin zur Aggregation von Bakterien in biologischen Systemen. Gemeinsame Voraussetzung solcher Phänomene ist ein Systemzustand fern des Gleichgewichtes. In chemischen Reaktionen kann dies erreicht werden, indem kontinuierlich frische Reaktanden zugegeben und Reaktionsprodukte entnommen werden.

Wissenschaftler am Fritz-Haber-Institut haben die Strukturbildung am Beispiel der katalytischen Oxidation von Kohlenmonoxid untersucht. In der betrachteten Reaktion haften Sauerstoff und Kohlenmonoxid (CO) zunächst auf einer katalytischen Platin(110)-Einkristalloberfläche. Die auf der Oberfläche beweglichen CO-Moleküle reagieren dann jeweils mit einem Sauerstoffatom zu Kohlendioxid, welches die Oberfläche sogleich wieder verlässt. Unter geeigneten Bedingungen bilden sich dabei selbstorganisierte Muster in Form mikroskopisch kleiner, vorwiegend Sauerstoff- beziehungsweise CO-bedeckter Bereiche auf der Platinoberfläche.

Diese räumlichen Bedeckungsmuster werden von zeitlichen Schwankungen (Oszillationen) der Sauerstoff- und CO-Bedeckung im Takt von wenigen Sekunden begleitet. Die nur einige Mikrometer durchmessenden Strukturen wurden mit einem am Fritz-Haber-Institut entwickelten Photoemissions-Elektronenmikroskopieverfahren sichtbar gemacht. Als typische Muster entstehen dabei chaotische Spiralwellen, die spontan wieder in Fragmente zerfallen und sich dabei reproduzieren. Die Spiralwellen reagieren so sensibel auf kleinste Störungen, dass sich ihr Verhalten nicht über längere Zeiträume vorhersagen lässt. Die Wissenschaftler sprechen deshalb von einem hochdimensionalen, raumzeitlichen Chaos, dessen Dynamik Veränderungen in Raum und Zeit einschließt.

Abbildung2: Ergebnisse von Experimenten an der CO-Oxidation (links) und deren mathematische Modellierung (rechts). Für jeweils zwei verschiedene Muster sind Raum-Zeit-Diagramme entlang eines Schnittes durch die Oberfläche gezeigt (oben chaotische Ringstrukturen, unten reguläre Domänen).

Bild: Fritz-Haber-Institut der Max-Planck-Gesellschaft


In der von Professor Gerhard Ertl geleiteten Abteilung des Fritz-Haber-Instituts konnten Theoretiker um Alexander Mikhailov anhand mathematischer Modellrechnungen vorhersagen, dass sich chaotische Strukturen mithilfe einer Rückkopplungsschleife unterdrücken und durch neuartige, vorher im Chaos verborgene Muster ersetzen lassen. Daraufhin gelang es Experimentatoren um Harm-Hinrich Rotermund in der selben Abteilung, solche Muster auch tatsächlich im Labor zu beobachten. Sie konnten gezielt neue Strukturen wie chaotische Ringmuster, reguläre Domänenmuster und reguläre Streifenmuster auf der Platinoberfläche erzeugen. Die Methode der dazu verwendeten Rückkopplung ist so effizient wie einfach: Während die Forscher die Muster auf der Platin-Oberfläche beobachteten, variierten sie die Zugaberate von Kohlenmonoxid (CO) in direkter Abhängigkeit von den auftretenden Strukturen. Die Zugabe von CO war dabei direkt proportional zur über das Sichtfenster gemittelten Bildhelligkeit im Mikroskop. Diese Methode störte die räumlichen Muster nicht direkt, sondern beeinflusste die Reaktionsbedingungen überall auf der Oberfläche in gleicher Weise. Unter den so veränderten Rahmenbedingungen konnten sich dabei die neu beobachteten Muster selbstorganisiert ausbilden. Die Max-Planck-Wissenschaftler erbrachten damit erstmals den experimentellen Beweis, dass hochdimensionales Chaos in chemischen Systemen mit einfachen Methoden beherrscht werden kann.

Die Ergebnisse stellen einen wichtigen Fortschritt im Verständnis spontaner Strukturbildung und deren Steuerung dar. Viele Resultate können auch auf ganz andere strukturbildende Systeme in und außerhalb der Chemie übertragen werden. Darüber hinaus kann die Beherrschbarkeit von hochdimensionalem Chaos für die Kontrolle technischer Prozesse, in denen Chaos meistens unerwünscht ist, von Bedeutung sein.

Originalarbeit:
Minseok Kim, Matthias Bertram, Michael Pollmann, Alexander von Oertzen, Alexander Mikhailov, Harm Hinrich Rotermund, Gerhard Ertl: Controlling Chemical Turbulence by Global Delayed Feedback: Pattern Formation in Catalytic CO Oxidation Reaction on Pt(110), Science, 18. Mai 2001

Weitere Informationen erhalten Sie von:

Dr. Harm-Hinrich Rotermund
Fritz-Haber-Institut der Max-Planck-Gesellschaft
Abteilung Physikalische Chemie
Tel.: 030 / 8413-5129
Fax: 030 / 8413-5106
E-Mail: rotermun@fhi-berlin.mpg.de

Presseinformation |

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie