Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gentechnik lässt Pflanzen der Dürre trotzen

11.08.2003


Links die unveränderte Ackerschmalwand, rechts zwei genetisch modifizierte Varianten. Die Aufnahme wurde nach zehn Tagen "Labor-Dürre" gemacht. Foto: AG Bartels


Wissenschaftler der Universität Bonn haben ein Gen identifiziert, das Pflanzen resistenter gegen Wassermangel macht. Sie konstruierten eine Variante, in der das Dürre-Gen häufiger abgelesen wurde. Erfreuliches Resultat: Die gentechnisch veränderte Modellpflanze trotzt der Trockenheit deutlich länger als die Wildpflanze. Die Ergebnisse wurden in der aktuellen Ausgabe von "The Plant Journal" publiziert (Band 35 Ausgabe 4 Seite 452 ff). Langfristig können sie vielleicht zur Entwicklung trockenresistenter Nutzpflanzen beitragen.


Die Wiederauferstehungspflanze trägt ihren Namen zu Recht: Bei Wassermangel verdorrt der südafrikanische Rachenblütler zu einem unansehnlich bräunlichen Gewächs. Doch wenn nach Wochen oder Monaten der lang ersehnte Regen fällt, kehrt binnen weniger Stunden wie durch Geisterhand das Grün in die scheinbar toten Blätter zurück. Bis zu 95 Prozent ihrer Wasserreserven kann die Pflanze unbeschadet verlieren und fällt dabei in einen Tiefschlaf, in dem sie ihren Stoffwechsel nahezu auf Null zurückschraubt.

Der Notfallplan der Wiederauferstehungspflanze steht in ihrem Erbgut: Eine ganze Reihe ihrer Gene wird nur bei Wassermangel abgelesen, andere werden komplett abgeschaltet. "Indem wir schauen, welche Erbanlagen hauptsächlich bei Trockenheit aktiv sind, versuchen wir zu verstehen, welche molekularen Vorgänge die Pflanze so unempfindlich machen", erklärt Professor Dr. Dorothea Bartels vom Botanischen Institut der Universität Bonn. Ihre Arbeitsgruppe konnte so eine Erbanlage identifizieren, die bei Wassermangel weit häufiger abgelesen wird als sonst. Erstaunlicherweise fanden die Forscher bei der heimischen Ackerschmalwand ein Gen, das dem der Wiederauferstehungspflanze sehr ähnlich ist - "ein großer Glücksgriff", so Professor Bartels. Denn die Ackerschmalwand (wissenschaftlich Arabidopsis thaliana) ist gewissermaßen die Labormaus der Pflanzengenetiker: Ein einfach zu züchtender und genetisch leicht zu verändernder Modellorganismus, dessen Erbgut zudem schon komplett sequenziert wurde.


Das Dürre-Gen sorgt dafür, dass die Pflanze mit bestimmten Giftstoffen besser fertig wird, die sich unter Trockenstress vermehrt bilden. Es enthält den Bauplan für das Entgiftungs-Enzym Aldehyd-Dehydrogenase (ALDH). Die Bonner Wissenschaftler schalteten dem ALDH-Gen der Ackerschmalwand eine Art Turbolader vor, der dafür sorgt, dass es erheblich häufiger abgelesen wird. Mit Erfolg: Die gentechnisch veränderten Pflanzen produzierten nicht nur deutlich mehr ALDH, sie überstanden auch erheblich längere Dürreperioden. Erst nach 16 Tagen ohne Wasser waren sie komplett vertrocknet - die Wildpflanzen überlebten nur 12 Tage ohne das lebenswichtige Nass. Auch mit erhöhten Salzkonzentrationen - in Böden trockener Regionen ein häufig anzutreffendes Phänomen - wurden die Pflanzen mit dem Turbo-Gen besser fertig.

Langfristig können Ergebnisse wie diese vielleicht zur Entwicklung trockenresistenter Mais-, Weizen- oder Soja-Sorten beitragen. Bedarf besteht zur Genüge: Nach einer Studie des International Water Management Institute wird bis zum Jahr 2025 ein Drittel der Weltbevölkerung in wasserarmen Regionen leben. Tragischerweise sind gerade die Ärmsten der Armen besonders betroffen, die zum Überleben auf den Ertrag ihrer Felder angewiesen sind. Doch auch die Industrieländer bleiben von dieser Entwicklung nicht verschont: Allein der Dürre von 1983 fielen in den USA die Hälfte der gesamten Mais- und ein Drittel der Sojabohnen-Ernte zum Opfer - ein Schaden in Höhe von zehn Milliarden Dollar. Und die deutschen Landwirte rechnen angesichts der diesjährigen extremen Trockenperiode mit bis zu 80prozentigen Ernteeinbußen.


Ansprechpartnerin:
Professor Dr. Dorothea Bartels
Botanisches Institut der Universität Bonn
Tel.: 0228/73-2070
Fax: 0228/73-2689
E-Mail: dbartels@uni-bonn.de


Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/Aktuelles/Presseinformationen/2003/284.html

Weitere Berichte zu: Ackerschmalwand Dürre Gen Pflanze Wassermangel Wiederauferstehungspflanze

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops