Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlüsselmolekül für Zellwanderung identifiziert

27.11.2002


Abbildung 1: Die Wanderung (Migration) von Keimzellen beim Zebrafisch wird durch die Verteilung von SDF-1 gesteuert. (reproduced from Cell 111(5): 647-659 (2002)


Wie bilden sich Organe, woher wissen die Zellen eines Embryos, wohin sie im Laufe der Entwicklung wandern müssen? Göttinger Wissenschaftler haben jetzt ein Molekül identifiziert, das bei der Migration von Keimzellen in Zebrafischen eine entscheidende Rolle spielt.


Das Wissen könnte langfristig auch helfen, schädigende Zellwanderungen beim Menschen zu kontrollieren.

Im Laufe der Entwicklung von Lebewesen entstehen Zellen oft an anderer Stelle als den Orten, an denen sie später gebraucht werden. Sie müssen erst dorthin gelangen. Die Untersuchung solcher Zellwanderungen (Migration) und die Identifizierung der zugrunde liegenden molekularen Zusammenhänge hilft Biologen, die grundlegenden Prozesse bei der Entwicklung von Gewebe und Organen zu verstehen. Mit diesem Wissen kann man dann Therapien zur Behandlung von Krankheiten entwickeln, die auf eine abnormale Zellmigration zurückzuführen sind. Ein wichtiges Modell bei der Untersuchung solcher Prozesse ist die Zellmigration von Keimzellen. Während der embryonalen Entwicklung wandern diese Zellen weite Distanzen vom Ort der Entstehung bis zu ihrem Zielorgan, den Genitalien, wo sie sich zu Spermien oder Eiern weiterentwickeln. Welche Moleküle die Keimzellen zum Ziel führen, wusste man bisher jedoch noch nicht.


Eine Arbeitsgruppe am Max-Planck-Institut für biophysikalische Chemie in Göttingen, unter der Leitung von Dr. Erez Raz, hat jetzt Licht ins Dunkel gebracht und - an Zebrafischen - einen molekularen Signalweg identifiziert, der diese Wanderung steuert. Zebrafische sind ein ideales Studienobjekt für Zellwanderungen: Die Embryos entwickeln sich rasch und außerhalb des Mutterleibes - und sie sind durchsichtig, was für mikroskopische Betrachtungen geradezu ideal ist. Mit gentechnischen Methoden kann man zudem die spezifischen Eigenschaften von verschiedenen Zebrafisch-Mutanten untersuchen und so auf molekulare Zusammenhänge schließen. In einer jetzt in Cell veröffentlichten Arbeit hat die Arbeitsgruppe gezeigt, dass während der frühen Entwicklung des Zebrafisches die Keimzellen von "SDF-1" ("stromal-cell derived factor-1") geleitet werden, einem Faktor, der auch für die Mobilisierung von Blutstammzellen, Leukozyten und Neuronen wichtig ist. Auch bei der Entstehung von Krebsmetastasen, bei HIV-Infektionen und Arthritis spielt SDF-1 eine entscheidende Rolle.

Um die Verteilung von SDF-1 im Embryo überhaupt wahrnehmen zu können, bedienen sich die Keimzellen eines Rezeptors (mit dem Namen CXCR4), an den SDF-1 bindet. Die Arbeitsgruppe um Erez Raz konnte zeigen, dass dieser Rezeptor während der Migration in den Keimzellen produziert wird und es ihnen dadurch ermöglicht, in diejenige Richtung zu wandern, wo die Konzentration von SDF-1 am höchsten ist. Das dynamische Expressionsmuster von SDF-1 während der normalen Embryonalentwicklung führt die Keimzellen präzise zum Zielorgan, der Region der zukünftigen Genitalien (Abb. 1a). Störungen des Signalweges führen zu schweren Migrationsdefekten. Wird zum Beispiel die Aktivität von SDF-1 oder des entsprechenden Rezeptors reduziert, können die Keimzellen sich nicht mehr orientieren und verteilen sich ungeordnet im gesamten Embryo (Abb. 1b). Umgekehrt kann man mit erhöhten SDF-1-Konzentrationen Keimzellen in Regionen locken, wo sie normalerweise nicht gefunden werden. In Fischembryos, in denen die Aktivität des eigenen SDF-1 unterdrückt und SDF-1 von außen an zufälligen Positionen injiziert wurde, konnten die Keimzellen zu abnormalen Regionen gelenkt werden (Abb. 1c).

Damit sind ein wichtiger Teil des Signalweges, durch den Keimzellen wandern, und der zugrunde liegende molekulare Mechanismus identifiziert; die Arbeitsgruppe untersucht diese Mechanismen gegenwärtig in anderen Modellorganismen. Der beobachteten "Anziehung" der Keimzellen durch SDF-1 in Zebrafischen liegt ein ähnlicher Mechanimus zugrunde wie der Zellbewegung bei bestimmten Krankheiten des Menschen, zum Beispiel wenn sich bei rheumatischer Arthritis T-Zellen in den Gelenken anlagern oder wenn Brustkrebszellen Metastasen in Gewebe bilden, das SDF-1 exprimiert, wie z.B. Knochenmark, Leber oder Lunge. Die Keimzellmigration bei Zebrafischen könnte daher als Modell zur Untersuchung dieser Krankheiten dienen. Man könnte nach Molekülen suchen, die mit dem SDF-1-Signalweg interferieren, und dies an den Fischen überprüfen.

Dr. Erez Raz
MPI biophysikalische Chemie
AG Keimzellentwicklung
37070 Göttingen

Dr. Christoph R. Nothdurft | idw
Weitere Informationen:
http://www.mpibpc.mpg.de/PR/02_12
http://www.mpibpc.mpg.de/abteilungen/165

Weitere Berichte zu: Embryo Keimzellen SDF-1 Zebrafische Zellwanderung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie